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Abstract

New Analysis on the Mechanics, Temperature, Tool Life

and Work Hardening in Oblique Machining

by VENUVINOD K PATRI and LAU WAI SHING

The majority of cutting tools in machining have some oblique angles.
Its study is therefore very important. Orthogonal cutting theory, which
is in a well developed stage pow, is a special case of oblique cutting
and tﬁe understanding of the latter therefore would strengthen our
understanding of orthogonal cutting itself.

A study of the literature in oblique cutting shows that only
chip formation and mechanics have‘been studied to some extent. Even these
are based on single slip line concept. While many other advanced techniques
are available for orthogonal cutting analysis, further analysis of other
important aspects like temperature,tool life, wprkharaening etc. have not
been attempted so far. This paper gives a brief summary of the work of the
authors and their associates over the last decade to fill in the above gap.

A simple and effective method have been proposed for measuring
chip flow angle. A new analysis on the mechanics of oblique cutting based
on the lower boundary of the shear zone using well known slip line principles
has been developed. It is shown that this analysis is as effective as the
single shear plane approach. Furthermore, it gives the normal pressure
ahead of the cutting zone which can be predicted from orthogonal cutting
using the concept of effective rake angle.

The problem of thermal analysis is attempted for the first time
in the paper using oblique moving heat source. The heat sources of the shear
and rake plane are resolved into lateral and normal component sources. The
temperatures due to these sources are estimated using a new master chart.

These are then superimposed using a specially developed superimposed formula.
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Experimental data has been presented showing that the tool life
and Taylor constant increase with increase in obliquity. An analysis
based on adhesion wear theory has shown that the principal reason for this
is the decrease in the mean temperature on the tool flank with increase
in obliquity.

Experimeﬁtal data is presented showing that workhardening increases
with obliquity. This is attributed to additional shear along the shear zone.
A method of predicting workhardening in oblique cutting based on cutting

forces is presented.
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New analysis on the Mechanics,
Temperature, Tool Life and Work
Hardening in Oblique Machining

1. INTRODUCTION

The importance of oblique cutting in the field of metal
cutting needs little emphasis. Most of cutting tools have some
magnitude of obliquity [i] of the cutting edge. For single point-
tools (Fig 1.la) the obliquity may range from 6 to 959, For
cylindrical milling cutters the obliquity (Fig 1.1b) may be as high
as 60°. It is therefore important to know the effects of i on
various metal cutting aspect like chip geometry, cutting forces,
cutting temperatures, tool wear, tool life and integrity and nature
of machined surface.

Historically, the study of obliquity has aftracted the
attention of metal cutting investigators for a long time. Merchant
[l] made an analysis of the equilibrium of the chip under cutting
forces in oblique cutting. This approach was examined experimentally
by Shaw et al later [2]. Stabler [31 proposed the relationship that
chip flow angle is equal to i. He tried to show that this follows
from the considerations of minimum energy {4]. Oxley [5], Bobrov [Q]
etc did parallel but similar studies. The concept of effective rake
angle, first proposed by Shaw et al has been a subject much controversy
(Armarego and Brown, [?] ). The list.ménfioned here gives only the
land marks but by no means gives a comprehansive ligt. In addition, to
these fundamentalgtydies there have been a number of investigations
trying to extend the rgsults to practical cutting tools like drills
[8], form tools for V-form [9] etc. There is another class of metal
cutting operations like rotary cutting where the rotary speed simulates
an effect similar to that of obliquity i. Studies have been done to _

extend the basis oblique cutting theory to these operations [10,11,12].




Most of the investigations suggested above largelylconfined
themselves to chip geometry and cutting forces. The subjects of
temperatures, tool life, and surface integrity have received lesser
fundametal treatment. Further, these theories have been generally an
extension of simple shear plane approaches. The study of mechanics
of oblique cutting has progressed little beyond the classical shear
plane approach proposed about 35 years ago. Meanwhile, the study of
mechanics of metal cutting has progressed considerably. Bold new
approacheé like the application of slip line models [}3,14], shear
zone models [15,16]_etc have been developed. However, generally
speaking, the various orthogonal cutting theories are waiting for
extension into oblique cutting.

The present authors have been working in the field over the
last decade. This paper summarizes the work of the authors in the
field. It tries to give a comprehensive view in oblique cutting covering
various aspects. Some of the work reported here had been published
elsewhere @7,18]. Others are under preparation for publication.

Since the’papef tries to cover a wide range of features,
the discussion of each item has,of necessity,been reduced to the
minimum. Wherever possible, standard nomenclatﬁre has been used. The
meanings of various terms should be evident to one who is aware of
classical literature on the subject. Emphasié is placed on new concepts
proposed; while taking classical conceptg_fof granted. Again, for the
sake of brevity, it has been possible to include only a few of the

experimental data obtained in support of proposed concepts.
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2., MEASUREMENT OF CHIP FLOW ANGLE

2.1 Introduction

The presence of chip flow angle is the chief characteristic
that differentiates between the chip geometries obtained in
oblique and orthogonal cutting. The importance of chip flow angle
in oblique machining needs no emphasis. Almost all models of chip
formation in oblique machining include it is an important parameter.
Experimental estimation I}Q,Z@ or theoretically predicting [?1,2%
the chip flow angles have been proposed and used. However, the
‘methods reported are generally suffering from limitations of either
lack of accuracy or requires tedius and expensive experimental set
up. The present method describes a simple but reliable method of
estimating the chip flow angie in oblique cutting.
2.2 The Method
Fig 2.1 shows schematically the geometry of chip forﬁation
in oblique cutting. Consider any arbitrary grid on the uncut
surface of the workpiece inclining at an angle § (Fig 2.2a).
Fig 2.2b is a magnified view as the grid line AB approaches the
cutting edge.

CB

b tan ¥

CD b tan i

i

BD = CD - CB = b(tan i - tan )

Time for B to travel to D = %?—
. . . AE
At the same time A will travel to E, time required = S
e
b(tan i - tan y) _ AE
v v
c
Vc
AL = 7 b(tan i - tan )

e L. wEant - A )

r
C

R———

- B e, -

v

T




From geometry,

AE _ _ AD
SinA Sin (180 - @)
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Two cases of formula (1) are of interest,

(1) when¥ = 0; =90° - +Sin ~ [i- Sin i Sin 0 ] (2.2)
[od

(i1) wheny =1i; =90° - o _ : (2.3)

Use of case (1) requires scribing a line initially on the unmachined
surface in a direction prependicular to the cutting velocity. It requires
two measurements, that of rc and ©.

Use of case (ii) requires scribing a line initially on the unmachined
surface in the direction of the cutting edge. It requires only one
measurement, that of ©. |

2.3 Measurement of ©

A line can be scribed on the unmachiﬁed surface in the direct
of the cutting edge.. After the cutting test has been performed, the
chips are collected and their lengths measured. The angle © is the
angle between the direction of chip flow and the direction of the
scribed line after deformation. The chip flow difection can be measured
from the scratch marks of the previous cut and the scribed lines on
the chip surface, the angle between the scratch mark énd the scribed

line then gives the value of © and from formula (2.3), P= G = BS



2.4 Observation

From the data obtained, the chip flow angle was estimated
by the present method, and other methods from the formula given
in the Introduction. All comparisons have been made taking the
results obtained from photographic method as the standard.

Fig 2.3 shows the comparison of p obtained from various
methods to that obtained by photographs. It shows that the chip
flow angles obtained from formula (2.1) agree very strongly with
“that from photographs.

The chip flow angles calculated from both the force methods
give poor correlation. The chip width method by far is the worst
method and leads to inadmissible values at low angles of inclination
owing to side spread.

Fig 2.4 shows the correlation between p obtained from formula
(Z2.2) to: that of forﬁula (2.3). The almost one go one corfespondénce
indicates that both formulae are equally accurate.

Fig 2.5 & 2.7 are some instant observations using data obtained
by formula (2.2).

Fig 2.5 & 2.6 show the effect of deptﬁ of cut on chip flow
angle. It can be seen that for small depth of cuts, Stabler's rule
is obeyed. However, as depth of cut increases, pis found to
increase.

Fig 2.6 shows that the velocity of cut does not have any effect
on chip flow angle.

Fig 2.7 shows the deviation of p obtained from wvarious methods

from Stabler's rule. From the experiment, it can be seen that Stabler's

rule applies only to very small inclination angles and small depth

of cut.
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3. MECHANICS OF OBLIQUE CUTTING USING A PSEUDO-SLIP LINE

Today, there exist a variety of models for orthogonal
cutting. These cover a wide range of concepts with the simple shear
plane models at one end and the complex slip line models at the other
end., Each model emphasisés a particular aspect at the cost of others.
Yet, it is the existance of this variety which enables us to have an
understanding of the totality of metal cutting though no single model
is able to cover the totality.

- The situation with oblique cutting is entirely different.

With the exception of shear plane modéls [1] and others involving mean
shear zone thickness [}] etc., no serious attempt has been made to
extend other models of orthogonal cutting to problems of non-plane-strain
cutting. Such extensions are, however, desirable since they wogld throw
more light on aspects hitherto unexplored in oblique cutting. This will
also test the model in a new environment and would throw greater light
on its advantages and limitations.

This paper aims at extending to oblique cutting, a pseudo-slip
line solution proposed by Connally and Rubenstein [23] for orthogonal
cﬁtting. After developing the model it is verified against the experimental

data available in literature and the implications discussed.

3.1 Connally and Rubensfein's Orthogonal Cutting Model
Fig 3.1a shows the éssumed bounds of the primary deformation

zones. These bounds must obviously:be slip lines. Consider a slip
line close to the lower bound. For simplicity, let the transient curve
joining the unmachined surface to the chip surface be ignored. The
slip line then meets the unmachined surface at 45 deg. OB is then the
nominal shear plane used in Merchant's [24] analysis. The slip line
is further assumed to be parallel to the cutting speed at the end it
meets the cutting edge. This feature and the absence of the.transient

surface are valid flaws in the model.



The cutting forces contributed by chip formation can be
estimated if the stress distribution on the slip surface are known.

It is more attractive to consider a slip surface close to the
lower boundary of shear zone, since the material there is still in the
virgin state. The curvature of the lower bound surface is usually low.
It is therefore permissible to replace the slip surface by two planes
(S and L-planes) parallel to it at each end. The error involved in such
a procedure would be low as far as the estimation of cutting forces is

~concerned. It would of course be undersirable to stretch the model to
other aspects of machining like the determination of exact stress and
strain distributions etc.

The stress distribution along the S and L planes may be
estimated from the well known properties of slip lines. Integrating
these stresses and taking appropriate components it is possible to
estimate the cutting forces. Such estimations made by Connally and
.Rubenstein [?é] agreed well with experimental observations. The length
'1l' of the L-plane is taken as a parameter similar in scope to the
‘shear angle in conventional analysis.

3.2 The New Oblique Cutting Model

On the basis of empirical evidence, it may be said that the
primary effect of obliquity is to change the oriéntation of slip on the
slip surfaces on the primary deformation zone. When one attempts at the
extension of Connally and Rubensteinfs model to oblique cutting, one is
tempted to keep the S and L-planes as they are and introduce lateral slips.
This is in line with MerchanE's [l] approach where he introduced lateral
slips on the conventional shear plane to take into account the effect of
obliquity. However, this would mean that the actual slip lines are now

inclined to the normal plane. If the S plane is kept inclined to the cutting
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plane at 45 deg, the slip lines would meet the free surface at
an angle less than 45 deg. It is therefore necessary to change
the orientation of S-plane accordingly.

Fig (3.1b) illustrates the basic features of the proposed
model. RS is the cutting edge. Plane RJKS is the nominal shear
plane. Curved surface RJKS is the slip surface under consideration.
Planes PJKQ (S-plane) and PQSR (L-plane) are drawn tangential to
surface RJKS at each end. The S-plane is inclined to the cutting
pPlane at angle wn whereas the L-plane is in it. PQ is the line of
intersection of the S and L-planes. !'n is the length of S-plane.

Shear is assumed to take place on surface RJKS in the direction
represented by curve OB. For simplicity it is assumed that OB is a
plane curve perpendicular to the cutting plane. © is the angle made
by this characteristic plane with the normal pléne. © may thus be
considered as the lateral shear angle in the L-plane. wg is the
corresponding angle in the S-plane. AB which is tangential to the
orientation of shear in the S-plane should be at 45 deg to the
._cutting plane. From the geometry of Fig (3.1b) the following

expressions can now be obtained.

tan wn = sec O or cosec wn = (1+ cosze)li (3.1)
sin ¢, = sin 0 //2 (.2
and
n=2 (cos‘_dbn - cos 0) . (3.3)
cos a
Where ¢ = L - (3.4)
A a /a - sinag
c n
The areas As and AL of the S and L-planes are given by
1
A = aw (1 + c052 9)‘5 30

s
and

!

aw (cot ¢n - cos 9) (3.6)
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It may be noticed that angle wn > 45 deg. For orthogonal cutting
e=0, wn = 45 deg as assumed in the orthogonal cutting model. As in
the case of orthogonal cutting oy may be interpreted as a parameter
similar in scope to the shear angle but in the present case it also
includes the effect of obliquity indirectly through 6.
The S-plane extends upto the free surface. Therefore the normal
and shear stresseé on the plane are equal to the flow stress T of the
work material. Multiplying these stresses with the area AS of the plane
the magnitudes of the shear force SS and normal force NS can be found.
From the knowledge of angles wn and wl these forces can be divided into
the normal (Ssn’ Nsn). Latera% (Ssl) and thrust (Ssy? Nsy) components.
Plane L being a slip plane, the shear stresses on it is again Ty But
the mean normal stress 'P' on it is unknown. Multiplying these stresses
with the area Al of the plane, the shear (SL) and normal forces (NL) can
be determined. These can be resolved further into the normal (SLn)’ lateral
(SLl) and thrust (NL) components. Cutting force components Pn', Pg' and
Py' may be obtained by summing up the appropriate components from the above.

The following expressions are obtained after simplification.

! =
Pn . SSn =k Nsn + SLn

TSAS cos 45 deg cos @ +.TSAs sin wn + TSAL cos O

5
T av [} + cos © (E_i_EEEHE_J - cos O + cos ¢n] (3.7)

P.' = :
1 SSl + SLI

TSAS cos 45 deg sin & + TSAL sin 6

1+ 2 E
= T aw sin © (*-*EEEL—*O - cos 8 + cot ¢, (3.8)

2
By B B,

i -
TSAS sin 45 deg + TSAS cos wn P AL

1+ c0529

aw (p (cot ¢ - cos @) - T, CcOS 0 - T, (—m-»—#» ] (3.9)
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An expression for parameter 8 may be obtained by dividing
equation 7 with equation S. Thus, in terms of force components

Pn' and Pl' we have,

: L
cos O - (EETQ sin ©
1

' 2 . % -1
+ [1—+E-q-5—g - cos B + cot ¢n] =0 (3..10)
2

It will be shown later through empirical evidence that

@ = i, Substituting this equality in equation 3.7 one has

1+ coszi g
p'= T, aw [} + cos i.( ) - cos i + cot ¢n] (3.11)
2

It will be seen that equation 3.11 is as reliable as the more

accurate equation 3.7 in predicting the normal force Pn'.

However,
when the substitution © = i was incorporated into equation 3.8 and
checked with experimental data the errors were found to be too high.

Application of the Model to Experimental Data and Discussion

With a view to testing the validity of the assumptions made and
the accuracy of the equations developed in the above analysis, the
model has to be tested on a wide variety of published experimental
data. However, only a few typical results are discussed below.
Consistency of the value of dynamic flow stress 'S' for a given
workpiece material is taken as the test criterion in the following.
In eqn. (3.7) and (3.11), if one plots the coefficient of 5!
against the force component, Fn’ if the magnitude of 'S' is constant
and the 'tool edge' and 'flank' conditions have not changed drastically,
one may expect all the data points to fall approximately on a straight
line. The slope of the straight line would then give the magnitude
of 'S' and the intercept on the Fn axis would represent the contribution
due to tﬁe cutting edge radius and the tool flank. Figs. 3.2 to 3.4

show such straight lines obtained from the data obtained from references

25,26, and 27 respectively.
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In all the three cases it is observed that the data points are
close to the straight lines drawn. The magnitude of 'S' in each
case is reasonable for partially work-hardened workpiece material.
Among themselves, figs 3.2 to 3.4 cover a wide range of cutting
speed (2.5 -~ 746 ft/min) normal rake angle (-10 to 360), inclination
angle (0-60°) and wncut chip thickness (0.002-0.012"). This
establishes the validity of the model in a wide range of cutting
~_conditions and tool geometry,

The shear force on Merchant's shear plane is given by

F = %‘ cos § - F sin @ Jz +F 2] s
n n b/ n t

S

To estimate the magnitude of shear stress S*'on Merchant's
shear plane (given by thfsin ﬂn), and obtain the slope of the
-resulting straight line. Figs. 3.5 to 3.7 show such plots obtained
from data given in references 25,26,27 respectively. Comparing these
with figs. 3.2 to 3.4 it is observed that the scatter in figs 3.2 to
3.4 is of the same order as that in figs. 3.5 to 3.7. It is also
noted that the magnitude of S is normally less than S*, but not as
small as to be equal to the flow stress of the non-work-hardened
workpiece material. This indicates that the slipfline analysed is
not exactly the lower boundary of the primary déformation zone but
lies somewhere in the region between the lower boundary and Merchant's

shear plane.
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Figs 3.8 to 3.10 show the variation of @ with varying i,

from the data obtained from references 25,26 and 27. It can be

observed that

(1)
(ii)

(iid)

0 is always less than i.
The difference (i-8) increases as i increases.
(i-8) is of the order of 7 to 100 even at inclination

angle as high as 50°.

3.4 The normal pressure on the Ln plane

The normal préssure p, on the Ln plane in oblique cutting can

be solved once 6 and S are knwon,

i.e. F_=WS s [_cos 450 - cos @ J sec i

z

From orthogonal cutting using rake angles equal to the effective

sin ©

+ P; Wt (cot ﬁn - cot y_) sec }

1

angles in oblique cutting, the normal pressure on L plane Pl can be

obtained by the equation P, = —-

FV

1 WL

Fig 3.8 shows that the normal pressures in both cases are

identical.

It is thus possible to predict the normal pressure of

oblique cutting using orthogonal cutting data. This is one aspect of

how effective rake angles can be used. The application of the normal

pressure will be shown later.

4. WORK HARDENING IN OBLIQUE CUTTING

In earlier publications [28,29], it has been shown that the workhardening

produced by orthogonal cutting is in fact caused by:

(1)

(i1)

Tensile stress ahead of the tool.
Burnishing effect due to the cutting edge radius and

the flank.
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When a metal is subjected to a strain above its elastic limit,
work hardening will occur. The work hardened metal will not
return to its original hardness even if the strain is completely
released. This induced hardness will only disappear by a re-
crystallization process. If a strain is again applied to this work
hardened material, a further work hardening will take place.
Assuming a linear relationship between the work hardening and the
strain applied, the total work harding produced will be the sum of
the work hardenings produced by the two strains applied respectively,
It is thus reasonagle to assume that work hardening can be additive,

viz: hm = ha + ho + hs

where hm = total hardness
ha = bulk hardness of material
ho = hardness caused by buréiship
hs = hardness due to tensile stress ahead of tool.

In oblique machining, the above relationship can be extended to

include the effect of obliquity. Thus hm = ha + ho + hs + hT (4.1)

Where hT = hardness due to lateral shear.

ho is obtained from hm VS t, at t = 0 at various i's Fig (4.1)

shows an experimental relationship between ho and the vertical cutting

edge component. It can be ssen that ho % 0.3 Fv' for aluminium alloy.
From section (3.4) it has been experimentally proved that the mean

normal pressure P; for oblique cutting is identical to that for

orthogonal cutting with a = oy

© Since in orthogonal cutting, hs < ty sec G g,

for aluminium alloy, hs = 5.2 x 103 .ty sec a,.

- Therefore: hm = ha + 0.3 Fv' + 5.2 x 103 ty seca, + hT

S S
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Fig (4.2) shows that the total surface hardness ht increases
linearly with increasing depth of cut. Furthermore, the hardness
increases with increasing inclination angle which agrees with
formula (4.1). The intercept on the hm axis gives the values ho
at different 1.

Once ha,.ho are known and hs obtained from the orthogonal
cutting data, hT can be obtained, viz |

hT = hm - ha - ho - hs

Fig (4.3) shows the relationship between hT and Fx' , the
horizontal cutting edge force component along the cutting edge.

It is seen that hT=Fx' and the constant of proportionality
depends on the work hardening characteristic of the material.
Fig (4.3) gives an equation of

hT = 0.08 Fx'

Thus the work hardening of oblique machining of aluminium alloy
can be predicted by the following equation:

hm = ha + 0.3 Fv' + [5.2 x 1{}3t2 sec aja=a + 0.08 Fx'

Similar equations can be developed for othir materials. Once
the equations are developed, the work hardening can be predicted by

cutting force data.

5. THERMAL ANALYSIS .OP OBLIQUE CUTTING

The theory of moving heat soruces, as developed by Carslaw and
Jaeger [30,31] has been widely used for thé the;mal analysis of orthogonal
cutting [27,28,29]. 25 years back, no theory is yet available for oblique
cutting. Some work undertaken recently under the supervision of the
authors [35] has succéssfully extended the orthogonal theory to oblique
cutting. This involved developing a new equation which enables the
superposition of two orthogonally moving heat sources. The development
of this principle and its application to oblique cutting are now briefly

summarized.

A 0 e s

i sirsiiimiiioy i smiics M




...15_

5.1 Carslaw and Jaeger's Moving Heat Source Theory

Fig 5.1 shows a rectangular friction heat source of size

(2% x 2m) moving on a semi-infinite conducting solid at velocity

V normal to the source base (2m). The friction force is F so that

i A~ (5.1)
49mJ

the source strength q =

Based on the work of Carslaw and Jaeger [25] it is possible

to express the mean temperature rise AB as

&§= QGG
KV(2m) 3 (5.2)

Carslaw and Jaeger [251 have shown that for (i) circular

sources when L = %& > 1 and (ii) for rectangular sources when

aspect ratioc AR = % > 2 and L > 0.2 we have

(5:3)

G = 3.8 /f so that
_ C1 q = . . '
W | :
where C, = 1.9 /i (5:5)
1 K T
C1 is thus a constant for given £ ,a and K.
5.2 Superposition Rule for Obliquely Moving Sources
Fig (5.2) shows the same source moving obliquely at angle
8 to 'the normal line ON. The velocity V can be resolved into
components
(5.6)

Vn = V cos B and VR =V sin_B&

The friction force can likewise be resolved into components

Fﬁ = F cos B and Fi = F sin B (5.7)

The sources may now be imagined to be the result of superposition

of two orthogonal sources of strengths.

g = Fn Vn = FV cos B =q cos B (5.8)
=F, V "FVSiZB— ‘ZB (5.9)
q, =F, V, = n = q sin :
(5.10)

It is easy to see that ¢ = q + q,

B e —

o s




16

Let aén and ﬂ@i be mean temperature rises due to the normal
and lateral component sources. These need to be superimposed in a
suitable manner to obtain the temperature rise A8 due to the
original source. For simplicity, let it be assumed that the
superposition rule is independent of V and the source shape (further
work is continuing to verify this rigorously). An idea of the
superposition-rule can now be obtained by considering a circular
éource so that equation (5.4) is applicable (see Fig 5.3). For
such a source the aspect ratio does not change with B so that C1

can be taken as constant. The following equations can now be

easily written.

& Cia . _ .3

Agn = —& = 0 (cos B)2 (5.11)
ﬁ;-
C.q 3

A8 = 1°2 » Aa (sin B8)2

N ol (5.12)

Combining equations 5.11 and 5.12, we have

43 _4/3 " i

a8 = (45 + 4B, y3/4 (5.13)

Thus it is possible to assess AB and A8, and superimpose
n :

2
them to obtain A8. The effect of source shape and velqcity can still
be included in the invidual estimation of A@n and ﬂ@z. It may be
noted that if the normal source is 'wide' ie. m/2>1 then automatically
the lateral source is 'narrow' ie m/2<l. But equation (5.4) is
applicable only when m/2>1 and L >0.2. It is therefore necessary to
know the values of G for the values of m/% and L. This has been
recently done [ﬁ] by drawing a special computer programme drawn

using the basic partial differential equations [30, 31]. Fig 5.4

shows the resulting nomogram.

i



543

R 7S

The theory of obliquely moving heat sources is necessary
in oblique cutting analysis because the source velocities
(Vs and VC) involved in this case are not perpendicular to the
source bases i.e. the cutting edge.

Estimation of shear plane temperature in oblique cutting

The area of the shear plane temperature is given by
ab
A =

5 cos i sin¢n (5.14)
The velocity of shear on this plane may be resolved into

normal and lateral components VSA and Vsﬁ given by:

V cos 1 cosa
n

V =
B cos (4 -a) - (5.15)

find Vo=V tan¢£ ) (5.16)

Where tan¢, =V_. {tan i cos (¢n —an? - sin 6 tanp }/cos o (5.17)

The heat developed per unit area on the shear plane is given

K & ' | (5.18)

A proportion R, is assumed to be flowing into the clip. Thus

1
the heat flux into the workpiece is (1—Rl) q- The shear plane may
therefore be conéidered as a rectangular heat source of size (22 x 2m) moving
on the semi-infinite workpiece. The source obliquity B is oSviously

equal to ¢£ The source can thus be divided into normal and lateral
components. The normal component -source has - the following properties:

source size: 2 = . and B = - (5:19, 5:20)

2 sin ¢ 2 cos 1
n

' m b sin ¢ﬂ
Aspect ration AR_ (2 ) = — : {5.21)
sn a cos i

SR py——
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Vsn 2
Source non-dimensional velocity: L. = ————— (5.22)
sn éal sind)n

2
Source strength: (1—R1)qS cos”™ ¢,
The corresponding parameter ES may be obtained from Fig 5.4 for
n

the given values of AR and L
sn sn

Thus the temperature Eise due to the normal component source is
_ (1-R,) q_ cos” ¢, G
88_, = Rl_ - 2 st (5.23)
Kl (2m) vsn

The aspect ratio of lateral component source is given by

AR, = 1/AR__ | (5.24)

The source non-dimensional velocity is given by

_ Vs a - : {5.25)
L., i
sL 2 .
oy sin ¢,

The parametefiﬁsg is obtained from Fig 5.4 for given I, and

ARsi' Thus, the temperature rise due to the lateral component source is

" ~
(l_Rl) q  sin ¢£ Gsi

ABst = Y (5.26)
K, (2m) 72 vsg
1
- The resultant temperature rise 8s on the shear plane is thus
5 _ 4/3 _ 4/3 3/4 ' .
ABs = (ABsn + ABs? ) (5.27)

Now consider the heat flow into the chip. The rate of flow of
heat into the chip is quSAS which results in an average temperature

rise of
ok

8o_ =
sc

S

chl V cos i sin ¢ﬂ (5.28)

The magnitude of Rl may be obtained by equating §s to -

Substituting the résulting valve of R1 into equation 5.26 (or equation 5.28)
the actual magnitude of Aés can be obtained. The mean temperature

on the shear plane is then given by
93 = &95 + 90 . (5:29)

Where 90 is the ambient temperature.
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5.4 Estimation of Rake Plane Temperature in Oblique Cutting

The area of chip tool contact area is given by

A = EB.L

cos 1

The velocity of sliding VC at the rake plane can be

resolved into normal and lateral components VCn and Vci given by

V cos i siny
I

cn
cos (¢ -a )
n Il

Vv, =V tan
cl cn

The heat developed per unit area is given by
2 . 2

FV F +V
_ cn ch

c
q:
¥ &d AL J

A proportion R, of this is assumed to go into the chip. The

2

chip tool contact area of size (ZCD) x (b/cos i) is considered as

(5.30)

(3.31)

(5.32)

(5.33)

a moving heat source with respect to the chip which is assumed to be

a semi-infinite solid. This source can be resolved into two component

sources of the following properties.

Normal component:

b ﬁ] Q1 2
AR = ——— L = —— Qe ™ R,q_cos
e 2 cosiC . m 20 s . ke
n 1
G rpnlis obtained from Fig 5.4 for given I, and ARypq
Lateral component:
ZCn cos i ch Cn 2
ARy ™ _—b Lrg = ——2al , Qg = qu sin P
]

G 1s obtained from Fig 4 for given Ly and ARy

Thus 2 _
. R2 q, cos P a, S

rn 5
Kl (2m) vcn

A

{5.34 to
5.36)

(5.37 to
9.39)

(5.40)



_20_

. 2 =
Ry 4y sin poyG .,

A8 = . : (5.41)
rl e : _
Kl (2m) Vc2 : _ | "
and
_ _4/3 _ 4/3 3/4 (5.42)
A8 = ( AB + Ag )
r Im m

The chip tool contact area may now be viewed as a stationery
heat source lying on the quarter-infinite tool material. The mean

temperature rise is then given by

Aart - (1_R2) qr 2
K (5.43)

Wherel = Cn and A can be obtained substituting the aspect

ratio

AR given by S S in equation

2 cos i Cn
1 1

e B oo 3 -l 1,2, 1
A= . [ sin AR + AR sin =+ (AR)“ + 3 (

3§
AR

: | i N ;
-3 (AR +—) /1 + AR 1 (5.44)

The magnitude of R_2 is now estimated from equation

Agr-+ 95 = &grt + 90 | : (5.45)

The resulting R, is substituted in equation (5.42) and the mean
rake temperature 8 is then given by

0= &Qr + QS (5.46)

Fig 5.5 shows the results of fﬁehabove analysis when applied
to the_experimental observations on a tube turning experiment on
mild steel. It is seen that up to i = 30° these is little effect
of 1 on temperature. There is a fall of 20% in temperature when

i is increased up to 600.
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6. TOOL WEAR AND TOOL LIFE

The effect of obliquity on tool life is now examined. Wear

can generally be classified into abrasion, adhesion, diffusion and

oxidation wears.

Of these, adhesion wear is the most predominant.

The last two types occur at high cutting speeds when the cutting

temperatures are high. However, even in these conditions the role

of diffusion process is limited to the weakening of the junctions.

The actual wear still occurs by an adhesion process i.e. forming and

breaking of welded junctions at the asperities on the contacting

surfaces.

Starting from the fundamental principles of adhesive wear,

Rubenstein [56] has developed the following experssion for the wear

rate at the tool flank in the case of free orthogonal cutting.

Eﬁg _ kg a b g )
i m PR Y f (cotB - tana )
Where Le = length of flank wear land
P, = pressure acting on flank wear land
= cutting time
Gf = mean temperature at the tool flank
o = rake angle
B = clearance angle
q = Schallbroch and Schaumann index (qu = const)
P, Ry ¥ , a, b ete are constants.

(6.1)



Experimental evidence suggests that Qf may be taken as
proportional to the mean temperatgre %: at the tool rake. Qr in
turn may be related to cutting speed V (keeping other cutting
conditions and tool variables constant) by the equation.

€
O = const V

r
Combining the above equations and comparing with Taylor's

equation

It is possible to show that

qne = 1

aﬂd C =(cotB - tana Sn. . (6.2)

The above analysis ignores the effect of rake angle. More
recently [Bi] the authors have obtained the following felationship to
characterize the effect of rake angle.

C;[(cotB -~ tano fn (lrﬁfaf %-] (6.3)

Where m is an arbitrary chosen constant satisfying the above
equation.

Equation (6.3) can now behmofified as

¢ a[ﬁcots - tan(x)n (l—m*a)é] K . (6.4)

Where K is a constant which appears in the following equation:

0 = K (1 )P v° ¢ 9.«(; i . 6.5
V = cutting velocity

f = feed rate

W =B sec i = width of cut

K = constant depending on i = (1)

Since the value of Yin eq (6.5) is very low, we can ignore

the term (B sec i)v and thus éq (6.?) can be re-written as
. R 1
—_ * € —
C =(cotB - tana)” (1-ma)® F(i) (6.6)

With this background, we now examine the likely effect of obliquity

i on Taylor constant C.

"
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Experiments were conducted by free turning a mild steel tube
(outer diameter = 50mm, tube thickness = 2mm, Brinell Hardness number 110)
on a lathe. The cutting tool was high speed steel (M41). The cutting

temperatures (Om) were measured by the tool-work natural thermocouple

method. The thermocouple calibration was done by the Silver Bead
Technique. Fig (6.1) shows the experimental results on Gm obtained at

V= 41.5 m/min and f = 0.Ilmm/rev. The progress of flank wear was

monitored by stopping the cutting at regular intervals and measuring 2f
with a microscope. The tool life criterion was set at £o= 0.18mm. Fig (6.2)
shows the Taylor plots obtained at f= 0.lmm/rev at different values of j

i (0 to 500). Fig (6.3) shows the relationship between i and C.

It is seen that cutting temperature Qm (= 9{) falls with increasing

i. This is attributed to the higher shear!angles and lower cutting forces
with increasing i observed in the experiments. A similar fall has been
analytically accounted for in the previous section by using the Obliquely
~Moving Heat Sources Theory. : i

| Since the normal rake and clearance angles do not change with i,
.wé may assume that the proportionality constant between rake and flank
temperatures (8, and Gf) to be insensitive to i. Thus from the adhesive
wear theory developed already, it follows, that tool life and Taylor.
constant should increase with i. This is verified in Figs (6.2) and (6.3)

There are indeed other possible effects of i (other than through

TP el - N e el e

8, . For instance, consider the moviﬁé Heat source at the tool flank.
As i increases this source_becomes oblique and can be resolved into
lateral and normal component heat sources. Even if the rate of heat
liberation (qf) at the flank is taken as constant, the narrow lateral _ i
component is likely to lead to a higher temperature. In addition, in some
cases q. itself could be a function of i. These effects would then !

oppose the favourable effect caused by decreasing Gr with increasing 1i.
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An examination of literature shows that the effect of 1 on
tool life T is not unique. For instance, Bobrov [38] has shown T
decreases with i in free oblique cutting (whereas the authors observation
are the opposite). Interestingly, Bobrov still obtains a fall in Qm
with i. The only way this can be explained is by assuming that the
conditions at the flank contact become more unfavourable with increasing

i. Obviously, this is an intersting field to pursue in future researches.
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