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Abstract—Traditional models of cutting based on Merchant’s shear plane idealization are incapable of
predicting any of the cutting force components without a priori knowledge of chip-tool friction. However,
Rubenstein’s work on orthogonal cutting has shown that this limitation can be avoided by utilizing the stress
distributions on the lower boundary of the shear zone. The present work aims to extend this approach to
oblique cutting with single and two edged tools. This paper focuses on single edge oblique cutting whereas
Part 2 analyses two edge cutting. It is assumed that the progressive deformation of the work material into
chip material occurs within the effective plane. The resulting stress distributions on the lower boundary are
integrated to yield expressions for estimating cutting forces from given tool and chip geometries. This
provides a mechanism for predicting the power and lateral components of the cutting force in single edge
oblique cutting. The predictions are verified against new and previously published experimental data.

NOMENCLATURE
A, area of “Merchant” shear plane
A, area vector of Merchant shear plane, i.e. vector with magnitude equal to A,, and directed

perpendicular to P, (directed towards chip material)

b workpiece width

C a constant related to the normal stress distribution on the true lower boundary of the
shear zone (TLB) (equal to p/p,.)

dA an area element on the TLB

dA area vector of dA, i.e. a vector with magnitude equal to the area of dA and directed
normal to dA and directed towards the chip material

df; contribution to f; due to deformation at dA

Fa cutting force component parallel to the cutting edge

f; cutting force vector in direction j

fe cutting force component in the direction of V

fen cutting force component parallel to P, and perpendicular to the cutting edge

fa cutting force component perpendicular to P,

fr cutting force component perpendicular to fp and fg

p mean normal stress on the segment of the TLB which is not parallel to P,

Paa normal stress on dA

DPuw normal stress on the TLB where the TLB meets the unmachined work surface

Pm mean normal stress on the segment of the TLB which is parallel to P,

Py plane in which the progressive deformation of an element of work material into the
corresponding chip element is assumed to occur

P the effective plane, plane parallel to V and V,

P plane passing through the Merchant shear plane, i.e. the plane passing through the cutting
edge and the line of intersection between the initial work surface and the chip surface

P “normal” plane, i.e. the plane perpendicular to the cutting edge

B, tool cutting edge plane, i.e. the plane containing the cutting edge and V

s shear flow stress of unmachined work material (a work material property)

t undeformed chip thickness

Disx unit vector normal to dA (directed towards chip material)

Uoa unit vector perpendicular to P,

Upes unit vector perpendicular to P

u unit vector parallel to an arbitrary direction j

. unit vector perpendicular to P, (directed towards chip material)

Uy unit vector parallel to V,

vy magnitude of cutting velocity and cutting velocity vector (directed towards the cutting

edge), respectively
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V. V. magnitude of chip velocity and chip velocity vector (directed away from the cutting edge),
respectively

Vi N magnitude of shear velocity and shear velocity vector P; (V. =V - V)

V.V,.V. velocity components of a material element parallel to axes x, y and z, respectively

Y “normal” rake angle, i.e. the rake angle measured in P,

[ S strain rates in the directions of axes x, y and z, respectively

€y, €., €  shear strain rates on area elements parallel to planes xy, yz, and xz, respectively

e chip flow angle, i.e. the angle between V_ and the line of intersection between the rake
face and P,

M acute angle between the shear velocity at a point along the TLB and P, when measured in
the plane tangent to TLB

Tw magnitude of 7, at the junction between chip surface and the unmachined work surface

nt the magnitude of m,, when P, = P,

Nen acute angle between V, and the line of intersection between P, and P,

A angle of inclination of the cutting edge, i.e. the acute angle between V and P,

£aa acute angle between u,4. and u,, (or u,.)

Y magnitudes of &, for planes 1 and 2, respectively, in Fig. 2(b)

o, mean normal stress in a material element

0,,0,,0, normal stresses on area elements perpendicular to axes x, y and z, respectively

Ty normal stress on an area element perpendicular to the yz plane and inclined at angle 8 to
plane xy as shown inFig. 4

Ts mean shear stress on the Merchant shear plane, P,

Tay» Tyz» Tz Shear stresses on area elements parallel to planes xy, yz, and xz, respectively

Tye shear stress on a plane parallel to axis x and inclined at angle 8 to the xy plane

&, “normal” shear angle, i.e. the acute angle between P, and P,

b, . “effective” shear angle, i.c. the acute angle between V and V,

U, acute angle between the plane tangential to the TLB (at a given point) and P,

(- magnitude of s, at the junction between chip and unmachined work surfaces

1. INTRODUCTION

Given the practical importance of metal cutting, it is essential to acquire a deep
understanding of the cutting process through models which stand up to experimental
verification. In order to be useful, these models must be able to predict machining
variables of practical importance (such as cutting forces, cutting temperatures, and tool
wear rates) in addition to providing as accurate an understanding as possible of what
goes on in the machining process.

Although cutting tools with complex chip formers are being increasingly used to
provide a degree of chip control, the majority of cutting tools continue to utilize cutting
wedges formed by plane faces. The cutting edges in these tools are straight. Figure 1

Increasing Scope

g

Work and
Tool Material

Properries
Si Iegidée IT' [_l
o [4] [
Twokdge [4] 2] []
e, (2] FE [

Economics

Chip Formation

Geometry

]
§
=
g

Cutting

5| Custing

>
L1 L_l Temperatu

| Tool Wear

b

mplexity

It

[ ]

+u

ric

Muri-dge | | [ | [ ]
Free Form ll I Lz I ' 3_, ITJ

A: Significant publications available
BI: Subjects of part Part I and Part Il respectively of the present study

000E

L

~aill

Increasing Geometric Co

L]
L]

3

6

Fig. 1. Modelling tasks in cutting with plane faced cutting wedges.



Three-dimensional Cutting Force Analysis. Part 1 309

provides an overview of the tasks involved in the modelling of machining operations
with such tools. These tasks are ordered along the horizontal axis in terms of increasing
range of the machining variables to be predicted and, along the vertical axis, in terms
of increasing geometrical complexity. Thus, “cutting forces” is placed at a higher level
than “chip formation” along the horizontal axis since the former includes, by its very
nature, a consideration of the latter. Likewise, single edge orthogonal cutting is placed
at a lower level on the vertical axis than oblique cutting since the former is the special
case of the latter occurring when the angle of inclination, A, of the cutting edge is
equal to zero. It follows from the ordering of these tasks that progress in modelling
metal cutting should typically start from task (1,1) and proceed towards task (6,5).
A review of the historical trends in metal cutting modelling generally confirms this
observation.

The ultimate goal is to be able to model task (6,5) (i.e. economics of cutting with
form tools) purely on the basis of tool and work material properties and the general
principles of mechanics, heat transfer, tribology, and economics. However, despite
numerous research efforts, even task (1,1), i.e. the task of predicting the geometry of
chip formation in orthogonal cutting solely on the basis of given tool and work material
properties, has not been satisfactorily resolved so far. This is partly because the strains,
strain rates and temperatures associated with metal cutting are far removed in magnitude
from those associated with basic material tests such as the tension test. Consequently,
some researchers now believe that it is more fruitful to consider single edge cutting as
a material test in its own right and use the results thus obtained as the basis for modelling
tasks at higher levels. The present work is based on this premise. Interestingly, a
review of the literature based on this premise indicates that reasonably satisfactory
models exist only for the tasks marked A in Fig. 1. The overall aim of the present
work is to be able to model the next logical task, i.e. task (4,2): two edge asymmetric
cutting, in a manner consistent with the modelling of cutting forces in single edge
orthogonal cutting. Further, the model should be able to predict the cutting forces
arising from individual cutting edges, i.e. it should be able to partition the overall
cutting force components between the two participating cutting edges. It may be noted
that further progress beyond task (4,2) is not possible unless this force partitioning
problem is solved. This is because the partitioned forces determine the thermal energy
generated at each cutting edge which, in turn, will determine the temperature distri-
bution and wear rate at the edge. This paper addresses tasks marked B1 whereas tasks
marked B2 are addressed in Part 2.

Amongst the various approaches used in modelling cutting forces, the shear plane
approach, originally developed by Merchant [1], stands out as the most extensively
applied. In this approacch, the chip is considered to be a rigid body in translational
equilibrium under the action of the external forces acting on it. (Henceforth, this will
be referred to as the Principle of Chip Equilibrium.) In the case of cutting with perfectly
sharp single edge orthogonal tools, i.e. task (1,2), these external forces (i) lie in a
plane orthgonal to the cutting edge, and (ii) act at the chip—tool interface, i.e. the
shear plane, and the chip-tool interface, that is, the rake face. Subsequently, the shear
plane approach was extended to single edge oblique cutting [1, 2]. As a result, each
cutting force component could be described as a function of the cutting conditions
(workpiece width being cut, b, and uncut chip thickness; t), the tool geometry (A,
and the normal rake angle, v,), the chip formation geometry (normal shear angle, ¢,
and chip flow angle, m.), the shear flow strength of the work material at the shear
plane, 7, and the apparent coefficient of friction at the chip—tool interface. However,
the derivation of these functions required the additional application of the Principle
of Force—Velocity Collinearity which assumes that the shear force, along the shear
plane and the friction force, at the rake plane are collinear with the shear velocity,
V,, at the shear plane, and the chip velocity, V., relative to the tool, respectively.

Notwithstanding its widespread application, the best that can be said about Merchant’s
shear plane approach is that it provides a simple and elegant way of analysing a given
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set of measured cutting forces. In particular, the Principle of Chip Equilibrium has
stood the test of time. However, this approach does not have the ability to predict the
magnitude of any of the cutting force components purely from a knowledge of chip
formation geometry (i.e. ¢, and m.) for given cutting conditions and tool geometry,
1.e. its predictive power with regard to cutting force magnitudes is zero. This is because
the prediction requires prior knowledge of the magnitude of the apparent coefficient
of friction at the chip-tool interface which, in turn, is an entity related to cutting
forces. Secondly, the magnitude of 7, cannot be known a priori since it is the shear
strength of the work material at the shear plane. The problem is that the shear plane
is located somewhere in the middle of the shear zone (see Fig. 2) and one has no way
of knowing, in practice, the magnitudes of the strains, strain rates, and temperatures
prevailing in its vicinity. Clearly, the magnitudes of these strains, etc. must influence
the magnitude of 7,. A review of literature on the mechanics of metal cutting points
to at least one alternative approach which is free from the limitations of the shear
plane approach described above. This is the analysis based on the lower boundary of
the shear zone as developed by Connolly and Rubenstein [3], and Rubenstein [4] for
single edge orthogonal cutting. This model resulted in an estimate of the power
component, fp, of the cutting force purely in terms of the uncut area, ¢,, and the
shear flow strength, s, of the unmachined work material. Extensive empirical evidence
is available in support of this theory [3]. This means that, unlike the shear plane
approach, Rubenstein’s approach does not require a priori knowledge of the state of
friction at the chip-tool interface. Thus, in contrast to Merchant’s shear plane approach
which has a predictive power of zero with regard to cutting forces, Rubenstein’s
approach has a predictive power equal to 4, i.e. it can predict the magnitude of one
of the two orthogonal force components.

To date, there has been only one attempt at extending Rubenstein’s orthogonal
cutting model to the case of single edge oblique cutting [5]. However, this work lacked
rigour since it relied only on an intuitive definition of the stress distribution on the lower
boundary of the shear zone. Subsequently, Lau and Rubenstein [6] and Rubenstein [7]
proposed the concept of equivalent orthogonal cutting in order to enable the utilization
of Rubenstein’s orthogonal cutting solution based on the lower boundary of the shear
zone [3, 4] in the modelling of oblique cutting. However, this model did not recognize
the three-dimensional nature of the velocities and forces associated with the lower
boundary of the shear zone in oblique cutting itself.

The objective of the present work is to develop a model of cutting forces based on

r
= !
D TA4 WORKPIECE
DB : Merchant shear plane DTCB : True lower boundary (TLB)
of the shear zone
DAB : Assumed path of planes DTC'B : Assumed lower boundary
(AB : Plane I, DA : Plane 2) partly overlapping the TLB

Fig. 2. The lower boundary of the shear zone in single edge orthogonal cutting.



Three-dimensional Cutting Force Analysis. Part 1 311

a consideration of the lower boundary of the shear zone in oblique cutting which is in
agreement with empirical evidence obtainned from single edge orthogonal cutting,
single edge oblique cutting, two edge symmetric cutting and two edge oblique cutting,
i.e. which is consistent across tasks (1,2)—(4,2) in Fig. 1. This paper describes a new
model for single edge oblique cutting with a predictive power of at least § with regard
to cutting forces. (The model will be extended to the case of two edge oblique cutting
in Part 2.)

2. THE LOWER BOUNDARY OF THE SHEAR ZONE IN SINGLE EDGE ORTHOGONAL
CUTTING

Consider Fig. 2 which illustrates Rubenstein’s model of orthogonal cutting [4]. Curve
DTCB represents the true lower boundary (TLB) of the shear zone, whereas DB
represents the Merchant shear plane. Basing his arguments on the plasticity conditions
near the junction, B, between the TLB and the unmachined work surface, Rubenstein
noted that the TLB must meet the unmachined work surface (at B) at 45° (i.e.
Ynw = 45°) and the normal stress on the TLB should be uniformly distributed equal
to the shear flow strength, s, of the unmachined work material. Likewise, on the basis
of empirical evidence concerning chip—work material separation, he assumed that the
TLB is parallel to the tool cutting edge plane, P, in the vicnity of D. Further, following
a rigorous application of the translational equilibrium criterion to the tool-chip—shear-
zone—workpiece system, Rubenstein made the following observations: “Provided the
stresses (normal stress, p, and shear stress, s) are uniformly distributed, the force
components fp (parallel to the cutting speed) and f, (normal to the machined surface)
are path independent, i.e. along any boundary joining B and D, including the Merchant
shear plane, the same force components will be obtained when the magnitudes of the
stresses (p and s) are specified. Of the infinity of paths joining B and D, one of these
is the TLB. The force components acting on the TLB may be determined by calculating
the force components along an arbitrarily chosen boundary joining the extremities of
the TLB provided (i) the stresses which are assumed to act on the arbitrarily chosen
boundary are the same as those acting on the TLB, and (ii) the stresses are uniformly
distributed” [4].

Rubenstein next observed that if the assumed boundary (DTC'B) had a segment
(TD) coincident with the TLB (DTCB) and the TLB is subjected, in its non-coincident
segment (TCB), to uniformly distributed stresses, the force components calculated by
integrating over the assumed boundary will be the same as those calculated by integrat-
ing over the entire TLB, irrespective of whether or not the assumed boundary has any
physical significance [4].

Based on this premise, Rubenstein chose an assumed boundary represented by planes
DA and AB which are tangential to the TLB at the latter’s extremities D and B,
respectively. Following the above arguments: (i) the shear stress on DA and AB were
taken to be uniformly distributed with its magnitude equal to s; (ii) the normal stress,
p, on AB was taken to be uniformly distributed and equal in magnitude to the shear
stress, s; and (iii) the normal stress on DA was taken to be of unknown distribution
and magnitude. Integration of these stresses over path DAB yielded the following
equation for estimating fp which is a function of just s, the uncut area (equal to b t),
and the shear angle, ¢,:

fe=sbt(cotd, +1). (1)

This equation has been shown to be quite accurate and robust in the light of extensive
experimental data obtained from orthogonal cutting [3].

3. ASSUMPTIONS

The following assumptions have been made in extending Rubenstein’s single edge
orthogonal cutting model [4] to single edge oblique cutting:
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Al. The cutting tool is perfectly sharp.

A2. The work material is a perfectly plastic and isotropic continuum (by definition,
the work material at the lower boundary has experienced no work hardening due
to cutting).

A3. Chip formation is of type 2 (continuous chip with no built up edge present).

A4. The Principle of Chip Equilibrium is obeyed, i.e. the chip may be considered as
a rigid body in translational equilibrium under the action of the forces exerted
on it from the shear zone and the chip/tool interface at the tool rake face.

AS. The nature of chip deformation is identical at any location along the active cutting
edge.

A6. The primary deformation shear zone is thin, i.e. its thickness is substantially
smaller than its length.

A7. The progressive deformation of an element of work material into the correspondin g
element in the chip material occurs within a plane. (We will call the deformation
plane Py. The orientation of Py is unknown at this stage of the analysis. However,
further analysis will be directed towards identifying this plane.)

4. THE TLB IN OBLIQUE CUTTING

Consider how the basic notions contained in Rubenstein’s model of TLB in orthogonal
cutting [4] may be extended to single edge oblique cutting. Figure 3(a) illustrates the
proposed approach. D'D" is the active cutting edge. B'B” is the intersection between
the chip surface and the unmachined work surface. Plane B'B"D"D’ is the Merchant
shear plane. The TLB is a curved surface joining B'B” and D’D". As in [4], the TLB
is assumed to be tangential to the cutting plane, P,, in the vicinity of the cutting edge
and to meet the unmachined work surface at the other end, B'B”, at angle {,,, when
measured in the normal plane, P,. Thus, while segment D'D"T"T’ of the TLB is
parallel to the cutting plane, P,, the exact geometry of the non-coincident segment,
B’B"T"T’, remains unknown.

Consider an area element of area dA located on the TLB [see Fig. 3(a)]. Let u,qs
be the unit vector normal to the area element. As in [4], it will be assumed that the
shear stress is the same at every location on the TLB and has its magnitude equal to
the shear flow strength, s, of the unmachined work material. However, unlike in [4],
it is recognized that the normal stress could be distributed non-uniformly over the
TLB. Let pa4 be the normal stress on dA so that py4 (dA) u,44 is the vector representing

Fig. 3. The lower boundary of the shear zone in single edge oblique cutting.
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the normal force on dA. Following assumption A7, the shear stress is assumed to be
directed along the curved line of intersection of the deformation plane, P, with the
area element. Thus the shear force vector on dA is given by s (dA){(upqs X Wng)/
sin€y,4 )}, where u,4 is the unit vector normal to P4, “X” represents the vector product
operation and &4 is the acute angle between u,4 and u,44. Note that £,, is equal to
arccos(u,q4 * U,g) Where “-” represents the scalar product operation. It is now desired
to find the contribution, df;, due to the normal and shear forces acting on dA, to the
total cutting force component, f;, in the direction of an arbitrary unit direction vector,
u;. Clearly df; can be expressed as

df; = {s(dA)(Unaa X Una)/sin &aa} - W; + Pas (dA)ungs - W
= [5{(dA X upq)/sin £aa} + pas dA] -u, )

where dA is the area vector of area element dA.
The total force f; may be obtained by integrating df; over the entire area of the
TLB, so that

fi= U {s(dA X u,q)/sin &aa } + paa dA}] . (3)

Note that in order to predict f; from equation (3) we need to have a priori knowledge
of the geometry of and the stress distribution on the TLB in addition to the orientations
of vectors u,4 and dA. In the next section, classical plasticity theory will be applied to
the problem with a view to obtaining as much information concerning the stress
distributions on the TLB as possible.

5. APPROXIMATE DETERMINATION OF THE STRESS DISTRIBUTIONS ON THE TLB

Consider a cubic infinitesimal volume of material at an arbitrary point P on the TLB
[see Fig. 3(c)]. The Cartesian axes at point P are such that axis x is parallel to the
cutting edge, axis y is tangential to the TLB at P and lies in the normal plane, and
axis z is directed normal to the TLB at point P. Let s, be the angle between the plane
tangent to the TLB at P and the cutting plane, P;. Let n, be the angular deviation of
the shear velocity at point P from the normal plane, P,,, when measured in the plane
tangential to the TLB at point P. Now, following assumption A2 and applying classical
plasticity theory, the following equations relating the normal stresses (o values), shear
stresses (7 values), velocities (V values) and strain rates (é values) can be written as:

Ty _ Tyz _ Taz (0 —om) _ (o) = Om) _ (0= )

by da bl & & & - @
where

crm=%(crx +oy, +ias) (5a)
, _ oV,

€. = ax (Sb)
. adV,

By a—; (5¢)
: =Y.

&~ (5d)
R VCARA

=35+ ) (5
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Jrao TV, K,
€, = 2( o ok 3y ) (51)
1oV, oV,
=_|—=+—].
b 2(6‘x az) (5e)

From assumption AS5, it follows that velocity gradients (aV,/ax, 9V, /ax and 9V./ox)
along direction x, which is parallel to the cutting edge, must have zero magnitudes.
Further, since the point under consideration is on the TLB which must be a “shear
surface”, the velocity gradient 8V./dy must also have zero magnitude. Thus

av, oV, aV, aV,
ox ox 0x ay

The assumption of thin shear zone (assumption A6) implies that the velocity gradients
across the thickness of the zone (i.e. along z) must be substantially larger than those
along its length (i.e. along y). Thus

V. 3V, V. v, -
dy = dy dz 0z

so that it may be assumed that dVx/dy = 9Vy/dy = 0. Combining this observation with
equations (5a), (5b), (5e)—(5g) and (6) yields

é&.=0 (8a)

& ~0 (8b)

€y =0 (8¢c)
v

o= o (84)

i 14V,

=52 (8e)

Next, combining equations (4a), (4c), (4d), (5a) and 8(a)—(8¢c) gives

Oy =0y, =0, ~0py (9a)

Ty =0. (9b)

Following again the thin shear zone assumption, it may further be assumed that
strain rates (€,., €,.) are uniformly distributed across the thickness, Az, of the shear
zone. Hence these can be expressed in terms of the known work velocity, V, and chip
velocity, V., as

e % (V sin A, ;ZVC sin m) (10)

‘.. z%(‘Vcos A cos i, + Vsjos-qc Sil'l(lbn—"yn)). (10b)
From the definition of n; and combining equations (4), (10a) and (10b),

e V'sink, — V_sinm, & T (11)

V cosk cost, + V. cosm.sin({, — vn) €

yz T

yz
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Equation (11) implies that, at any point on the TLB, the shear stress and the shear
velocity are approximately collinear. Now we substitute equations (9a) and (9b) into
van Mises yield condition

(02 = O + (02 = 0)? + (0. = 0)? + 6(%, + 72, +12,) = 662 (12)
(where s is the flow stress of the unmachined work material) to obtain

o S (13)
Combining equation (13) with equation (11), it is noted that

Ty = 5 COS T)g (14a)

Ty = 5sin 7 . (14b)

Now, the following equations for the shear and normal stresses, 7,4 and gy, respect-
ively, on a plane perpendicular to the yz plane and inclined at angle 6 to plane xy
(which is tangential to TLB) can be obtained from the equilibrium condition (see Fig.
4):

Tye COSO — T4 Sin6 + o, sind + 7, cosh = 0 (15a)

0, CosH + 7,.8inB — 0 cOSO — 7,450 =0, (15b)
However, we know that the normal stress is of zero magnitude on the surface of the
unmachined work material. Likewise, following assumption AS, it may be assumed
that the shear stress in the plane, P,, normal to the tool cutting edge, is also of zero
magnitude. Thus, letting 6 = U, and 7,, = oy = 0 (Where U,,,, is the magnitude of y,
at the junction between the TLB and the unmachined work surface) in equations (15a)
and (15b), gives

0, = —1,, tanl,, (16a)

o= et (16b)

but from equation (9a), o, = o,, so that

"-c

x x, yand z : as in Fig. 2¢
Fig. 4. Stresses on a plane perpendicular to the yz plane at a point P on the TLB.

HTH 36-3-C
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Yep, = 45°. (17)

Equation (17) implies that, in oblique cutting, the TLB meets the unmachined work
surface at an angle approximately equal to 45° (whereas, in orthogonal cutting, it meets
exactly at an angle of 45° [4]).

Finally, it follows from equations (14a), (14b), (16) and (17) that the magnitude of
the normal stress, p,,, on the TLB where it meets the unmachined work surface is
given by

Pe =0;at B= 1, tany,, = 7,, = 5COS gy , (18)

where 7, is the magnitude of =, at the junction between the TLB and the unmachined
work surface (we will identify the method of estimating T, later).

Now, as in [4], it could be assumed that the normal stress on the portion B'B"T"T,
which is not coincident with the cutting plane, is uniformly distributed so that the
magnitude of py,4 in equation (3) can be taken to be equal to s cos ms,, at least over
the non-coincident portion of the TLB (see curve b in Fig. 3). However, there is
considerable evidence in orthogonal cutting literature that the stresses in the shear
zone in the vicinity of the cutting edge are tensile, whereas they are compressive
elsewhere in the zone. Thus, one can expect that the actual normal stress distribution
on the lower boundary is of the form characterized by curve a in Fig. 5. If this is the
case, the mean normal stress, p, on the non-coincident segment (BT in Fig. 2, or
B'B"T"T" in Fig. 3) of the TLB should be smaller than the normal stress at the junction,
B, with the unmachined surface, i.e. the magnitude of p should be a fraction C of the
normal stress at B so that

P =Cscosng, . (19)

6. PREDICTION OF FORCE COMPONENTS PARALLEL TO THE CUTTING PLANE, P,

The ideal method of estimating f; is to use equation (3) and perform the integration
involved in it over the TLB. However, since the complete geometry of the TLB is
unknown, the possibility of using an assumed path of integration was investigated. In

Normal Stress
|
b : C=1 as assumed i 4
p=Es cosn:{v— = /m{i’]f
Mean Stress
/ - - U on BT
This zone has €iC<liep<p,! | =Cscos qef
no effect on fp & fgi= ] =
0 frm—
Mean Stress L
el Distance along TLB
i
I
I
|
' Workpiece
’ D ) 4

Fig. 5. Idealization of the normal stress distribution on the lower boundary of the shear zone.



Three-dimensional Cutting Force Analysis. Part 1 317

particular, a path consisting of two planes, namely planes 1 and 2, similar to the
method adopted in orthgonal cutting [4] as illustrated in Fig. 3(b) was considered.
Here, plane 1 is inclined to the cutting plane, P, at an arbitrary angle U,;, whereas
plane 2 is parallel to P,. In order to enable force estimation from such an assumed
path, equation (3) can be rewritten as

g
fi= [E {s(A; X u,q)/sin§; + Pt‘Ai}] )
=5{(A; X 0,q)/sin & + Ccos N,y Ay} - u; +5{(A; X upq)/siné, + pLAs} - u;), (20)

where A; and A, are the area vectors of planes 1 and 2 in the assumed path of
integration, my,, is the magnitude of as evaluated for plane 1, p, and p, are the mean
normal stresses on planes 1 and 2, respectively, given by p; = C s cosn,; and p, = p,.
(of unknown magnitude), and £; and &, are the acute angles between vectors A, and
u,4, and between A, and u,,, respectively.

Note that equation (20) contains the parameter p,,, of unknown magnitude. However,
if the prediction is confined to a force component (such as f.4, fpn, fr, O fp) parallel
to the cutting plane, P, the term A, -u; will clearly vanish (since in this case A, is
perpendicular to plane P, where wu; is parallel to plane P,). Thus

= S{(AL X Upa)/sin & + (Ag X Ung)/sin & + CcosmuA} - u, (21)

provided that the condition uj|P; is satisfied.

The presence of u,, in the above equation implies that f; depends on the orientation
of the deformation plane, P,. Further, the presence of terms sin &; and sin &, in the
equation implies that the resulting f; estimate is path dependent, i.e. the estimate of
f; will depend on the assumed geometry of the lower boundary of the shear zone. In
fact, it can be demonstrated that there is no deformation plane passing through V,
which results in the sin &; and sin &, terms vanishing from equation (21). It is therefore
concluded that assumption A7 prevents the finding of a path-independent solution to
oblique cutting. In contrast, if the assumption that deformation could occur over a
curved surface (still passing through V,) is allowed, it might be possible to arrive at a
path-independent solution to the problem. However, such an analysis would require
knowledge of the exact geometry of the TLB. Since the exact geometry of the TLB
is unknown, the feasibility of finding an approximately path-independent solution to
the problem may now be examined. In particular, a plausible deformation plane will
be defined which appears to lead to a path dependency within acceptable limits. (It
may be noted that Venuvinod and Lau had arbitrarily assumed in [5] that P, was
normal to P,.)

The “effective plane”, P, is now proposed as a candidate for the deformation plane
Py (recall assumption A7), i.e. Py = P, This proposal is inspired by the observation
that several previous investigators (in particular Shaw [2]) have found that the concept
of the effective plane is capable of accounting for several commonly observed phenom-
ena in single edge oblique cutting. Shaw [2] defined the effective plane, P, as the
plane parallel to the initial work velocity, V, as well as the final chip velocity, V..
Note that, since V; = V — V,, this definition implies that P is also parallel to V..

Thus, provided that the condition u/|P, is satisfied, equation (21) can be rewritten
as follows by replacing u,4 with the unit vector, u,.;, normal to P,

fi=sl{(Au/sin &) + (Ax/sin &)} X Upee + CcosmEhiA4] - u;, (22)

where mgi,; is the magnitude of m.,: when P, is taken parallel to P.; & and & are

redefined as the acute angles between A; and u,, and, A, and u,., respectively.
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Equation (22) can be further simplified by noting and incorporating the following
observations derived from the geometry of chip formation in oblique cutting.
(1) The area of Merchant shear plane, A,,, is given by

A, = bt/(cos A sind,,) . (23)

(2) Since the bounding edges of the chain of planes, 1 and 2, used in approximating
the TLB is common with those of the Merchant shear plane,

AJ + AZ = A1-11 = Amum b (24)

where u,, is the unit vector normal to the Merchant shear plane, P,,. (This is in fact
true whatever the chain of planes used to approximate the TLB.)

(3) We arbitrarily assume that (we shall evaluate the error resulting from this
assumption later)

A, /sin&; + A,/siné& = A /sin &, . (25)

(4) From the definition of P, and the relative orientations of P.; and P,,, we note
that

(Am x unef)"rSin gm = Am(um x unef)"{Sin gm =Am Uy, , (26)

where uy_is the unit vector in the direction of the shear velocity vector, V,, on the
Merchant shear plane and &, is the angle between u,, and u.;.

(5) Equation (17) states that plane 1 meets the unmachined work surface at an
angle of 45°. Thus it can be shown, by replacing nt, by n¢ in equation (22) and
taking ¢, = 45° in equation (11), that

nef, = arctan[{tan A, cos(45° — vy,) — tan n. sin45°}/cos vy, ] . (27)

(6) Since A, is normal to P, and A, - u; = 0 when (uj|P;), the following vector
transformations can be made:

Ccosml Ap-u;=Ccosmil, (A; + A;) - u; = Ceos el (A, - u)) . (28)
Now combining equations (22)—(28), it can be shown that
j}:""SAm{(“VS'“j) + Ccos g, (“Vs'“j)} (29)

provided that the condition uj|P; is satisfied.

Equation (22) is a path-dependent version that will yield an exact solution to the
problem of estimating f;, provided that the assumed path of the lower boundary (LB)
corresponds to that of the true LB. In contrast, equation (29) is an approximate but
path-independent solution.

It is believed that the TLB, in practice, would lie somewhere between two extremes.
One extreme is the case when the TLB is identical to the Merchant shear plane except
for the fact that the TLB moves away from the Merchant shear plane in the vicinity
of its junction with the unmachined work surface so as to satisfy the condition that
Unw = 45°. In such a situation, equation (29) yields the exact solution. The other
extreme occurs when the geometry of the TLB is such that it can be approximated by
two planes, of areas A; and A, as described in the derivation of equation (22), but
with the condition that the LB segment with area A, is inclined at angle 45° to P..
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The f; estimate in this case can be obtained from equation (22) with suitably substituted
parameters.

The difference between the f; estimates obtained in the above two extreme solutions
represents the maximum error associated with the use of equation (29). This error can
be expressed as a percentage of the estimate obtained from equation (29). When such
a procedure was applied to the empirical data reported in [6] for machining aluminium
alloy with single edge oblique tools, it was found that percentage errors associated
with equation (29) were within = 3% even when A, was as large as 50°. For practical
purposes, this is believed to be an acceptable range of error.

Now taking u; in equation (29) to be successively parallel to f.q4, fpn, fr and fp and
evaluating the corresponding scalar products in terms of the geometric data set {A,
&dn, M} it can be shown that

fea = SAmSin Ny, (30)
fen = SA,, (cos ng,, cos b, + C cos nEf, sin d,,) (31)
fr = 5Am (COS Ny €OS by, SN A — sin g, €0s A + C cos ML, sin by, sin \,) (32)
fe=5Ap (cos b, + Ccos s, sin b, cos ) , (33)

where &, the effective shear angle, is given by

b, = arccos(cos mg,, cos b, cos A, + sin ng, sin A;) (34)
and 7, 1S given by

Nem = arctan[{tan A, cos(d, — v,) — tan . sin ¢, }/cos v, ] . (35)

Note, when A, = 0 (and therefore n, = 0) and C = 1, equation (33) reduces to the
corresponding equation for orthogonal cutting [see equation (1)]. Thus, Rubenstein’s
solution to orthogonal cutting [4] is a specific case of the solution to oblique cutting
developed here.

7. ESTIMATION OF THE THRUST FORCE COMPONENT, f,

Equation (3) does not facilitate the estimation of the thrust force component, fo,
because of the unknown magnitude of p,, which acts in the direction of f5. However,
assuming that the Principle of Force—Velocity Collinearity is obeyed at the chip—tool
interface, it is possible to derive the following equation for estimating f, from the
previously estimated magnitudes of f.; and fp, [see equations (30) and (31)] which are
not influenced by p,, (this condition and the following equation are implicit in the
oblique cutting analyses described in [1, 2, 5,6]):

fo = {fea/(tanm.cosy,)} — fentany, . (36)
8. EXPERIMENTAL VERIFICATION OF THE NEW MODEL AND DISCUSSION

The force predictions resulting from the above model against experimental data were
then tested. In particular, data on single edge oblique cutting of an aluminium alloy,
copper and mild steel presented in [6] and further experimental data (reproduced in
Table 1) obtained by the author while cutting another aluminium alloy were used. The
experimental procedure used in the further experiments was identical to that adopted
in [6]. Chip thicknesses, chip flow angles and cutting forces were measured while dry
cutting with a range of tool geometries and uncut-chip thicknesses (A, = 0-50°, y,, = 25
and 30°, ¢ = 0.05-0.175 mm). Edge forcces were removed from the measured force
components by the method used in [6] to yield the magnitudes of fp, f, and fx arising
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Table 1. New oblique cutting data: machining aluminium alloyt

Normal rake, v, = 25° Normal rake, v, = 30°
t hs ¢’n Te fP fR fQ d)n Te fP fR f(_?
(mm) (deg)  (deg) (deg) (N) (N) (N) (deg) (deg) (N) (N) (N)
0.050 0 31.4 0 169 0 29 35.5 0 174 0 19
0.075 0 320 0 269 0 49 35.5 0 254 0 29
0.100 0 34.0 0 329 0 54 35.5 0 334 0 39
0.125 0 33.0 0 429 0 74 35.5 0 424 0 49
0.150 0 33.0 0 519 0 89 35.5 0 494 0 54
0.175 0 35.1 0 599 0 104 35.5 0 604 0 69
0.050 10 32.0 10 193 16 20 35.5 11 145 20 16
0.075 10 35:1 10 263 26 45 35:5 12 245 30 27
0.100 10 33.0 10 343 26 60 36.6 11 320 40 37
0.125 10 34.0 9 463 36 80 36.6 11 420 50 47
0.150 10 34.0 9 543 46 85 37.7 10 460 60 52
0.175 10 35:1 10 633 56 90 37.7 10 550 70 62
0.050 20 330 18 166 53 17 37.7 18 183 38 22
0.075 20 34.0 20 236 68 27 377 20 253 5% 34
0.100 20 351 20 336 88 37 37.7 16 338 88 44
0.125 20 35:1 24 436 108 52 38.8 20 418 88 52
0.150 20 351 16 506 138 57 38.8 19 498 103 64
0.175 20 35:1 21 566 168 62 38.2 18 618 128 79
0.050 30 34.0 30 191 55 29 37.7 30 141 50 9
0.075 30 35:1 30 261 75 44 37.7 33 236 67 2%
0.100 30 36.1 32 341 95 59 37.7 28 316 92 23
0.125 30 37.1 34 401 115 69 37.7 27 386 117 26
0.150 30 38.1 36 521 150 84 37.7 27 446 137 31
0.175 30 a7 34 631 180 104 377 29 536 167 41
0.050 40 35.1 35 217 87 21 31.7 40 151 63 4
0.075 40 36.1 36 297 122 41 38.8 38 276 116 14
0.100 40 371 44 407 152 66 38.8 36 361 151 14
0.125 40 37.1 37 497 192 66 38.8 36 436 173 19
0.150 40 38.1 36 647 242 106 38.8 39 521 218 21
0.175 40 38.1 37 707 287 81 38.8 36 596 248 24
0.050 50 31 45 164 75 2 40.9 46 195 106 -4
0.075 50 38.1 51 299 190 12 40.9 46 220 116 il |
0.100 50 39.1 48 299 190 12 39.8 52 350 176 -1
0.125 50 40.1 46 444 270 7 39.8 47 400 211 -1
0.150 50 40.1 50 529 310 17 40.9 47 500 261 —6
0.175 50 41.0 44 659 375 17 40.9 47 605 321 -6

+HSS tool, dry cutting, work width 6 mm.

from chip formation. The shear angles were estimated from the chip length ratios since
these exhibited smaller scatter than those estimated from chip thickness ratios.

On preliminary analysis, none of the above data sets was found to satisfy the condition
of collinearity between V. and the friction force at the chip-tool interface. Hence, no
attempt was made to test the prediction of f5 from equation (36) and the discussion
will be confined to testing the prediction of force components parallel to the cutting
plane, P..

However, irrespective of the validity of the Principle of Force-Velocity Collinearity
at the chip-tool interface, equations (32) and (33) can be used to compute the predicted
fr and fp, respectively. These predicted magnitudes can then be compared with the
corresponding measured magnitudes of fr and fp, respectively, with a view to verifying
the new oblique cutting model.

8.1. Estimation of s and C for a given work material

The prediction of fr and fp from equations (32) and (33) requires a priori knowledge
of parameters s and C. It has already been argued that s must be a material constant
since it is the shear flow strength of the unmachined work material. In contrast, C
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characterizes the degree of non-uniformity of the normal stress on the TLB. A larger
deviation of C from unit magnitude implies a larger degree of non-uniformity of the
normal stress distribution on the non-coincident portion of TLB. Further, it is not
immediately clear whether C is a material constant. A review of orthogonal cutting
literature suggests that the normal stress distribution in the shear zone could depend
on the work material and the rake angle. It is now hypothesized that C is strongly
dependent on the work material, only weakly dependent on the rake angle, and
independent of other cutting conditions (such as r). (Empirical evidence in support of
this hypothesis will be examined later.)

It is intended to be able to predict any force component parallel to P,. To enable
this, s and C need to be estimated using equations (30) and (31), respectively. Equation
(30) suggests that s can be estimated independently of C by examining the correlation
between the predicted magnitudes of f.4/s and the corresponding measured magnitudes
of feq- In contrast, the use of equation (31) for predicting fp, involves s and C
simultaneously. However, a preliminary analysis of experimental data shows that f.4
measurements usually exhibit greater scatter than fp, measurements. Hence, both
equations (30) and (31) will be used in the estimation of s and C. Further, it may be
noted that the estimation of s from equation (30) becomes indeterminate when applied
to orthogonal cutting data (i.e. data obtained with A, = 0).

In view of the above observations, the following procedure was applied to data
obtained with A; equal to 10, 30 and 50° for estimating the magnitudes of s and C for
each work material.

(1) The magnitudes of f.4/s and fp,/s were estimated from equations (30) and (31),
respectively, for different magnitudes of C selected in the range 0-2. (2) For each
value of C, a linear regression without intercept on the ordinate was performed by
taking predicted f../s and fp,/s values as abscissa values and the corresponding measured
values f.4 and f, as ordinate values. The standard error and the coefficient of determi-
nation resulting from this regression exercise were noted.

(3) The magnitude of C resulting in the smallest standard error was taken as the
best estimate of C. The slope of the regression line associated with the best C was
taken as the best estimate of s.

Table 2 shows the results obtained by applying the above procedure to oblique
cutting data taken from four different sources. It may be noted that each data set
contains at least 18 readings obtained by varying ¢ in the range 0.05-0.175 mm, and
As in the range 10-50°. Further, the coefficient of determination in every case was
larger than 0.97. This validated the assumption that s and C were independent of ¢
and A,. In addition, an application of a similar regression analysis to each of the data
subsets in Table 1, corresponding to vy, equal to 25 and 30°, showed that the best
estimate of C was equal to 0.82 for both the data subsets. This indicated that C was
only weakly dependent on v,. Together, these observations validated the assumption
that s and C were work material constants.

Table 2. Results obtained from the application of the TLB model to experimental datat

s Coefficient of Data from

Work material and cutting conditions (MPa) C _ determination reference
Aluminium alloy 1 New data

v = 30° 2314  0.82 0.988 (Table 1)
Annealed aluminium alloy,

HE9WP, v, = 20° 112.9 1.10 0.986 7
Commercially pure copper,

Y. = 30° 308.4 0.09 0.973 T
Annealed mild steel,

Yo = 25 and 30° 398.8 0.47 0.992 7

+HSS tool, dry cutting, V = 3 m/min.
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Once the magnitudes of s and C were thus estimated from a limited set of oblique
cutting data on a given work material, it became a straightforward exercise to predict
fr and fp for any other oblique cutting condition from equations (32) and (33),
respectively. Figure 6 illustrates the correlation between predicted and measured fg
and fp for A, equal to 0, 20 and 40° (note that these are different from the A, values
used for the parameter estimation) for the four work materials listed in Table 2. The
large magnitude of coefficient of determination (equal to 0.975) obtained demonstrates
successfully the ability of the new model in predicting at least two of the three cutting
force components in single edge oblique cutting. Further, unlike the widely used
Merchant shear plane model [1, 2], the new oblique cutting model has achieved this
high degree of force prediction ability without requiring the invocation of the Principle
of Force—Velocity Collinearity at the rake face and any a priori knowledge of the state
of friction at the chip—tool interface.

However, when Fig. 6 was decomposed into data for fx and f, separately, it was
noted that the coefficient of determination for fi assumed the smaller value of 0.951,
while that for f, remained fairly high at 0.977 (see Table 2). This indicated that while
fr might not be predicted with great confidence, one can indeed do so with regard to
fp- This is fortunate from a practical point of view, since fp is the power component
of the cutting force.

Consider now the case of orthogonal cutting which is the condition obtained when
A, = 0. In this case, A,, = (b t)/sin d,., b. = b, and 0% = 0 so that equation (33)
assumes the following simplified form:

fe=sbt(cotd, + C). (37)

The above equation reduces to the original orthogonal cutting equation derived by
Connolly and Rubenstein [3] if C is assumed to be equal to unity. Thus, the present
oblique cutting model has enabled a refinement of Connolly and Rubenstein’s model
of orthogonal cutting [3] where it was arbitrarily assumed that the normal stress
distribution on the “non-coincident” portion of the TLB was uniform, i.e. C = 1. This
was necessary because the problem of orthogonal cutting could not be solved otherwise.
However, the present work has shown that this assumption is not necessary if s and
C are estimated from oblique cutting data.

Moreover, a detailed analysis of the regression results obtained during the parameter
estimation exercises showed that the standard error associated with the estimation of

:
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0 500 1000 1500 2000
Predicted f, and f, (N)

Fig. 6. Correlation between predicted and measured magnitudes of f; and fg (X) Al, vy, = 25°, and 30°,

Table 1; (+) Al, y, = 30°, [7]; (A) copper, vy, = 30°, [7]; (O) mild steel, y, = 20° [7]. A, = 0, 20 and

40°, ¢t = 0.05-0.175 mm, HSS tool, dry cutting. Slope of regression line = 1.001. Coefficient of determination
= 0.975.
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§ was quite insensitive to even substantial variations in C in the vicinity of the best
estimate of C. For instance, in cutting the aluminium alloy [7], the variation in standard
error was found to be less than 2% even when C was varied in the range 0.8-1.4. A
similar situation was noted when the data in Table 1 (while cutting another aluminium
alloy) were analysed. It was therefore concluded that, at least in the case of cutting
aluminium alloys, it may be assumed that C is approximately equal to unity.

9. CONCLUSION

A new analysis of single edge oblique cutting based on a model of the geometry of,
and stress distributions on, the true lower boundary of the shear zone has been
presented. Equation (29) may be used to predict any force component parallel to the
cutting plane with reasonable accuracy solely from a knowledge of the flow stress, s,
of the work material, the uncut area, the shear angle, and the chip flow angle. The
application of the model does not require any a priori knowledge of the friction
conditions prevailing at the chip-tool interface. Thus, the model is an improvement
over previous models based on the Merchant shear plane [1, 2] which, although widely
used, do not have the ability to predict any of the cutting force components without
a priori knowledge of the state of friction at the chip—tool interface. Further, the
thrust force component, f,, can be predicted provided the Principle of Force—Velocity
Collinearity between the tangential force is satisfied at the tool—chip interface. It turns
out, however, that such collinearity is rarely observed in empirical data on oblique
cutting. Further research is needed to resolve this problem.

The new model has demonstrated a rigorous and direct approach to the modelling
of the stress distributions on the lower boundary of the shear zone in oblique cutting.
However, the model is unable to achieve an exact and path-independent solution to
oblique cutting. The present work has demonstrated that it is important to recognize
the significance of the non-uniformity of the normal stress distribution on the TLB.
This aspect was left unaddressed in the original orthogonal cutting model [3, 4] of
Rubenstein. Further research is needed to investigate the full implications of this
observation.
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