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PREDICTION OF FORCES IN OBLIQUE CUTTING

P. K. Venuvinod' and W. L. Jin™

ABSTRACT

The material at the lower boundary of the primary deformation zone in cutting should, by
definition, have experienced no cutting deformation. Hence the shear flow stress on the
lower boundary must be a work material constant. Thus, modelling of orthogonal cutting
based on the lower boundary has been particularly successful in predicting the power
component of the cutting force when continuous chips without built up edge are produced.
This paper extends this approach to oblique cutting. It is assumed that the progressive
deformation of the work material into chip material occurs within a plane called the
deformation plane. An application of plasticity theory shows that certain simplifying
assumptions concerning the three dimensional stress distribution on the lower boundary can
be made with acceptable accuracy. The resulting stress distributions on the lower boundary
are then integrated to yield expressions for estimating cutting forces from given tool and chip
geometries. It is noted that force components parallel to the cutting plane may be estimated
by assuming that the deformation plane is parallel to the "effective plane", i.e. the plane
parallel to the initial work velocity and the final chip velocity. This provides a mechanism
for predicting the power and lateral components of the cutting force. The third force
component, namely the thrust force component, may then be predicted from the condition
of collinearity between the chip velocity and the direction of the friction force at the chip/tool
interface. The predictions are verified against new and previously published experimental
data from oblique cutting.

Nomenclature

area of Merchant shear plane (P,)

area vector of Merchant shear plane, i.e. vector with magnitude equal to 4,, and
directed perpendicular to P, (directed towards chip material)

workpiece width

a constant related to the normal stress distribution on the TLB

an area element on the lower boundary of the primary deformation zone

area vector of dA, i.e. a vector with magnitude equal to the area of d4 and directed
normal to dA

contribution to f; due to deformation at dA

cutting force component parallel to the cutting edge

cutting force component in the direction of V

cutting force component parallel to P, and perpendicular to the cutting edge
cutting force vector in direction j

cutting force component parallel to P, and perpendicular to V

cutting force component perpendicular to P,
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i angle of inclination of the cutting edge, i.e. the angle between V and P, (ISO X))

) shear flow stress of unmachined work material (a work material property)

L undeformed chip thickness

t, chip thickness

D mean normal stress on the segment of the lower boundary of the primary deformation
zone which is not coincident with P,

Dm mean normal stress on the segment of the lower boundary of the primary deformation
zone which is coincident with P,

P, plane in which the progressive deformation of an element of work material into the
corresponding chip element is assumed to occur

P,  plane parallel to Vand V,

P,,  normal stress on dA

{ ‘Merchant’ shear plane, i.e., the plane passing through the cutting edge and the line
of intersection between the initial work surface and the chip surface

P ‘normal’ plane, i.e. the plane perpendicular to the cutting edge (and rake face) (ISO)

8 tool cutting edge plane, i.e. the plane containing the cutting edge and V (ISO)

u,, unit vector normal to d4

u,, unit vector perpendicular to P,

u,, unit vector perpendicular to P,

u; unit vector parallel to an arbitrary direction j

u, unit vector perpendicular to P, (directed towards chip material)

uy, unit vector parallel to V,

V, V. magnitude of cutting velocity and cutting velocity vector (towards the cutting edge)
respectively

V., V. magnitude of chip velocity and chip velocity vector (away from the cutting edge)
respectively

V., V. magnitude of shear velocity and shear velocity vector (towards the cutting edge)
respectively on P, (V,.=V-V)

Vo, V,, V, velocity components of a material element parallel to axes x, y and 2z
respectively
o, ‘normal’ rake angle, i.e. the rake angle measured in P, (ISO v,)
e chip flow angle, i.e. the angle between V, and the line of inetrsection between the
rake face and P,
7, acute angle between the shear velocity at a point along the lower boundary of the
shear zone and P, when measured in the plane tangent to the lower boundary at the

point

n,s  magnitude of x, at the junction between chip and unmachined work surfaces

ns  angular deviation from P, to the line of intersection between P, and the lower
boundary of the primary deformation zone where the latter meets the unmachined
work surface.

n,,  acute angle between V, and the line of inetrsection between P,, and P,

0. acute angle between u,, and u,, (or, u,,)

6,, 6, magnitudes of 6, for to planes 1 and 2 respectively in Fig. 2b

b, ‘normal’ shear angle, i.e. the acute angle between P,, and P,

b, ‘effective’ shear angle, i.e. the acute angle between V and V,

Vn acute angle between the plane tangential to the lower boundary of the primary
deformation zone (at a given point) and P,

Y,  magnitude of y, at the junction between chip and unmachined work surfaces

A apparent friction angle at the tool/chip interface
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O, mean normal stress in a material element

0,, 0y, O, ‘normal’ stresses on area elements perpendicular to axes x, y and z
respectively

0 normal stress on an area element parallel to axis x and inclined at angle 6 to
plane xy in Fig. 3

T mean shear stress on the Merchant shear plane, P,

Yo T T shear stresses on area elements parallel to planes containing axes (x, y),(y, 2)
and (x, z) respectively

Tas Ti shear stresses on a plane parallel to axis x and inclined at angle 6 to xy plane

& 6l 6 ‘normal’ strain rates on area elements perpendicular to axes x, y and z
respectively

€y Es € shear strain rates on area elements parallel to planes containing axes (x, y),
(v, 2) and (x, z) respectively

Other symbols used are defined in the text of the paper.
1. INTRODUCTION

A cutting operation in which the cutting speed vector, V, deviates from the plane normal to
the cutting edge, P,, is said to be oblique. Chip formation and cutting mechanics in such
operations tend to be three dimensional. Since a vast majority of cutting operations in
practice are oblique to some degree, the prediction of cutting forces in such operations is a
problem of practical significance.

Classical models of oblique cutting [1 and 2] resulting in continuous chip formation without
built up edge, have been based on the utilisation of the notion of Merchant shear plane. In
these models the prediction of any of the three cutting force components requires a priori
knowledge of the mean shear stress, 7, on the shear plane and the apparent friction angle,
A, at the tool/chip interface in addition to that of chip geometry. Unfortunately, both 7 and
A happen to depend on cutting conditions in addition to the tool/work material pair which
often means that they cannot be known a priori. Thus, models based purely on the
"Merchant" shear plane have been unable to predict any of the cutting force components even
in the two dimensional case of orthogonal cutting (when i=0).

In contrast, the analysis of orthogonal cutting based on the lower boundary of the shear zone,
as proposed by Connolly and Rubenstein [3 and 4], has been able to predict the power
component, f;, of the cutting force merely from known magnitudes of the shear flow stress,
s, of the work material and the chip thickness. This has been possible because the magnitude
of 5 is a property of the work material prior to being subjected to any cutting deformation
so that, unlike 7, § must be a true material constant.

Previous attempts to extend the lower boundary concepts, which have proved highly
successful in orthogonal cutting [3 and 4], to oblique cutting (for example, as in [5]), had
relied on intuitive definitions concerning the geometry of and the stress distributions on the
lower boundary. The present paper aims to present a more rigorous approach towards
extending the fundamental notions behind Rubenstein’s model of orthogonal cutting [4] to the
case of oblique cutting.
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2. THE LOWER BOUNDARY OF THE PRIMARY DEFORMATION ZONE
IN ORTHOGONAL CUTTING

Consider Fig. 1 which illustrates Rubenstein’s model of orthogonal cutting [4]. Curve DTCB
represents the true lower boundary (TLB) of the primary deformation zone whereas straight
line DB represents the Merchant shear plane. Basing his arguments on the plasticity
conditions near B, Rubenstein noted that, at B, the TLB must meet the unmachined work
surface at 45° and the normal stress on the TLB should be equal to the shear stress, s, which
must be uniformly distributed over the TLB [4]. Likewise, on the basis of the condition of
chip/work material separation, it was noted that the TLB must be parallel to the tool cutting
edge plane, P,, in the vicinity of D. Further, following a rigorous application of translational
equilibrium criteria to the tool/chip/primary deformation zone/workpiece system, Rubenstein
made the following observations: "Provided the stresses (normal stress, p, and shear stress,
s) are uniformly distributed, the force components f, (parallel to the cutting speed) and f,
(parallel to the normal to the machined surface) are path independent, i.e. along any
boundary joining B and D, including the Merchant shear plane, the same force components
will be obtained when the magnitudes of the stresses (p and s) are specified. Of the infinity
of paths joining B and D, one of these is the TLB. The force components acting on the TLB
may be determined by calculating the force components along an arbitrarily chosen boundary
joining the extremeties of the TLB provided (i) the stresses which are assumed to act on the
arbitrarily chosen boundary are the same as those acting on the TLB, and (ii) the stresses are
uniformly distributed” [4].

Tool

The Figure shows a section parallel to the normal plane, P,

DB : Merchant Shear Plane DTCB : True Lower Boundary
DAB : Assumed Path of Planes DTC'B : Assumed Boundary
(AB : Plane 1, DA : Plane 2) Partly Overlapping the TLB

Fig. 1 The lower Boundary of the Shear Zone in Orthogonal Cutting

Rubenstein next observed that if the assumed boundary (DTC’B) had a segment (TD)
coincident with the TLB (DTCB) and the TLB is subjected, in its non-coincident segment,
to uniformly distributed stresses, the force components calculated by integrating over the
assumed boundary will be the same as those calculated by integrating over the TLB,
irrespective of whether or not the assumed boundary has any physical significance (see Fig.

1) [4].
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Based on this premise, Rubenstein chose an assumed boundary represented by planes DA and
AB which are tangential to the TLB at the latter’s extremities D and B respectively.
Following the above arguments, (i) the shear stress on DA and AB were taken to be
uniformly distributed with its magnitude equal to s, (ii) the normal stress on AB was taken
to be uniformly distributed and equal to s, and (iii) the normal stress on DA was taken to be
of unknown distribution and magnitude. Integration of these stresses over path DAB yielded
the following equation for estimating f, which is a function of just s, the uncut area (= bt,),
and the shear angle, ¢,.

f. = sbt,(cotp,+ 1) (§))

This equation has been shown to be quite accurate and robust in the light of extensive
experimental data obtained in orthogonal cutting conditions [3].

3. ASSUMPTIONS
The following assumptions are made in developing the new model of oblique cutting :

Al. The cutting tool is perfectly sharp.

A2. The work material is a perfectly plastic and isotropic continuum.

A3. Chip formation is of type 2 (continuous chip with no built up edge present).

A4. The chip is a rigid body in equilibrium under the action of the forces exerted on it
from the primary deformation zone and the chip/tool interface at the tool rake.

A35. On the rake face, the tangential force at the chip/tool interface is collinear with the chip
velocity vector, V..

A6. The nature of chip deformation is identical in any section normal to the cutting edge.

A7. The primary deformation shear zone is thin, i.e. its thickness is substantially smaller
than its length.

A8. The progressive deformation of an element of work material into the corresponding
element in the chip material occurs within a plane which we will call the deformation
plane, P, .(The orientation of P, is unknown at this stage of the analysis. However,
further analysis will be directed towards identifying this plane.)

4. THE TLB IN OBLIQUE CUTTING

We now examine how the basic notions contained in Rubenstein’s model of TLB in
orthogonal cutting [4] may be extended to single edge oblique cutting. Fig. 2a illustrates the
proposed approach. Plane B’B"D"D’ is the Merchant shear plane. The TLB is a curved
surface joining B’B" and D’D". As in [4], the TLB is assumed to (i) be tangential to the
cutting plane in the vicinity of the cutting edge and (ii) meet the unmachined work surface
at the other end, B’B", at angle y,, when measured in the plane normal to the cutting edge.
Thus, in Figure 2, segment D’D"T"T’ of the TLB is coincident with the cutting plane, P..
The exact geometry of the non-coincident segment, B’B"T"T’, is however unknown.
Following assumption A8, the curve of intersection DTB between the TLB and the
deformation plane, P, (as yet unidentified), is taken to represent the direction of shear along
the TLB.
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i ¥~ _ Intersection Curve
[ Between TLB

X0
Fig. 2 The Lower Boundary of the Primary Deformation Zone in Oblique Cutting

Consider an area element of area d4 located on the TLB (see Fig. 2a). Let u,, be the unit
vector normal to the area element. As in [4], we assume that the shear stress is the same at
every location on the TLB and has its magnitude equal to the shear flow stress, s, of the
unmachined work material. In contrast, the normal stress could be variable across the TLB.
Let p,, be the normal stress on dA. Clearly, p,, acts in the direction of u,, so that p,,(dA4)u,,
is the vector representing the normal force on dA. The shear stress is assumed to be directed
along the line of intersection of the deformation plane, P,, with the area element. Thus the
shear force vector on dA is given by s(dA){(u,xu,,)/sind,)} where u,, is the unit vector
normal to P,, "x" represents the vector product operation and 6,, is the angle between u,,
and u,,. Note that 0,, is equal to arccos( u,*u,;) where "*" represents the scalar product
operation. We now desire to find the contribution, df, of the normal and shear forces
arising from dA to the total force £ in the direction of an arbitrary unit direction vector ;.
Clearly this can be expressed as follows :

df;={s(dA)(uXu,)/sing,} *u, + p,(dA)u, *u, @)
= [s{(dAXu,)/sind,} + p,dA]*u,

where dA is the area vector of the area element dA.

The total force f; is obtained by integrating df; over the entire area of the TLB, so that
J; =[] m{S(dA Xu,)/sinb,, + pMdA}] * U, 3)

Note that in order to predict f; from equation 3 we need to have a complete knowledge of the
geometry of and the stress distribution on the TLB in addition to the orientation of vector u,,.
While it is recognised that such a complete knowledge concerning the TLB is probably
impossible to obtain purely in terms of chip formation geometry, we will, in the next section,
apply classical plasticity theory to the problem with a view to obtaining as much information

e e oo s B TTE WY i mn e S Yo R e e SRR L
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5. APPLICATION OF PLASTICITY THEORY

Consider now a cubic infinitesimal volume of material at an arbitrary point P on the TLB
(see Fig. 2¢). Let ¥, be the angle between the plane tangent to the TLB at P and the cutting
plane. Let », be the angular deviation of the shear velocity at point P from the normal plane,
P,, when measured in the plane tangential to the TLB at P. We choose the coordinate axes
X,y and z at P as shown in Fig. 2c where axis x is parallel to the cutting edge, axis y is
tangential to the TLB at P and lies in the normal plane and axis z is directed normal to the
TLB at P. Then, following assumption A2, and applying classical plasticity theory we may
write the following equations relating the normal stresses (o values), shear stresses (7 values),
velocities (V values) and strain rates (e values) :

T T T o-o., -0 .-

Belro =, =) _mo 2 m (4a-4e)
éxy é}z éxc & é)’ éz
where
» +0 + g _aVy Bl
GO T e”_é‘_y’ T (a-5g)
_1ax6‘Vy 13 -_16Vz av,
“3I% m” *iwm ) “2'% &)

From assumption A6, it follows that the velocity gradients (3V,/dx, dV,/dx and 3V,/dx) along
direction x parallel to the cutting edge must have zero magnitudes. Further, since the point
under consideration is on the lower boundary of the primary deformation zone which must
be a "shear surface", the velocity gradient dV,/dy must also have zero magnitude.

Thus,
v, c'iV a_v av, (6a-6d)
ox ax ox 9y

The assumption of thin primary deformation zone (assumption A7) implies that the velocity
gradients across the thickness of the primary deformation zone (i.e. along z) must be
substantially larger than those along its length (i.e. along y).
Thus,

av._ oV avV_avV

PR QR oo o A M

ay ~ dy 0z’ 0z
so that we may assume that dV,/dy=3V,/dy=0. Combining this observation with equations
5 and 6, we have

(N

=0, =0, ¢ =0,

8a-8e
.19V, . 19V, s
€ ——"n-—"y € Teme—
% 2Wz T2k
Further, combining equations 4, 5 and 8, we obtain
o=~d,=~0,=~0, 7.=0 (92-9d)

Again following the thin primary deformation zone assumption, we may further assume that
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strain rate gradients (¢, €,,) are uniformly distributed across the thickness (Az) of the shear
zone. The strain rate gradients can now be computed from known work and chip velocities
as follows

1 Vsini-V siny,

S 3T Az (10a, 10b)
. 1 Vcosi cosy,+V cosysin(y,-ca,)
=g Az

Now combining equations 4 and 10, we have

Ta_ Vsini-V siny, a1
T, Vcosi cosy,+V cosnsin(y,-a,)

yz
From the definition of 7, and equation 11, it can be shown that

tany = = (12)

Equation 12 implies that, at any point on the TLB, the shear stress and the shear velocity are
approximately collinear. Now we substitute equation 9 into Mises yield condition

(ox—am)2+(cry—am)2+(az—crm)+6(riy+rfz +72) =652 13)

(where s is the flow stress of the unmachined work material) to obtain

o g2 (14)

2 P
Tt Ty =

Combining equation 14 with equation 12, we note that

T, = S cosn, T, = 5§ Ssinn, (15a, 15b)

x

From Fig. 3, which shows how the stresses on a plane inclined at angle 6 to plane xy
(tangential to TLB) can be obtained from the equilibrium condition, we have

7,4C0S0 —a,fi:nﬂ +a,sinf +rﬂcqsﬂ =0 (16a, 16b)
0,c050 + fﬂsmﬁ -0,c058 —‘r}\,smﬂ =0
However, we know that, on the surface of the uncut work material, the normal stress is of
zero magnitude. Likewise, following assumption A6, we may assume that the shear stress

in the plane normal to the tool cutting edge, P,, is also of zero magnitude. Thus, letting
0,=7,,=0, in equations 16a and 16b, we have

0, = ~T, tanf*, o, = -7, cotf* (17a, 17b)
But from equation 9, o, = 0,, so that

‘\bnﬂz 6. g“'I'Sﬂ (18)

where v, is the magnitude of y, at the junction between the TLB and the unmachined work
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Yo

x, yand z : as in Fig. 2¢

X

Fig. 4 Stresses on a Plane Inclined to the xy Plane at a Point on the TLB

surface. Equation 18 implies that the TLB meets the unmachined work surface at an angle
approximately equal to 45°.

Finally, it follows from equations 15, 17 and 18 that the magnitude of the normal stress, pg,
on the TLB where it meets the unmachined work surface is given by

py=0,atB = 7 tany,, = 1, = 5 cosn, (19

where 7, is the magnitude of #, at the junction between the TLB and the unmachined work
surface.

6. PREDICTION OF FORCE COMPONENTS PARALLEL
TO THE CUTTING PLANE, P,

We now know that it is reasonable to assume a uniformly distributed shear stress equal to
s over the TLB. We also know that the normal stress on the TLB where it intersects the
unmachined work surface is equal to (s cosn,). We will identify the exact method of
computing 7, later in this section. However, for the moment, we will assume that the
magnitude of 7,5 is known.

As in [4], we could assume that the normal stress on the portion, B’'B"T"T, which is not
coincident with the cutting plane, is uniformly distributed so that the magnitude of p,, in
equation 3 can be taken to be equal to (s cosn,;) atleast over the non-coincident portion of
the TLB (see curve b in Figure 4). However, there is considerable evidence in orthogonal
cutting literature that the stresses in the primary deformation zone in the vicinity of the
cutting edge are tensile whereas they are compressive elsewhere in the zone. Thus, one can
expect that the actual normal stress distribution on the lower boundary is of the form
characterised by curve a in Figure 4. In consequence, the mean normal stress, p, on the
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ri
Boend ”;B b: C=1 as assumed in [3, 4] _
range
Cscosq:B '
s C<l, ie. has !
(Mean stress on BT) | & C<b e p<pp eﬁec,nz,,i

L&

kS

(Mean stress on DT) :

Fig. 4 Normal Stress Distribution on the TLB

non-coincident segment (B’B"T"T’ in Figure 2 or BT in Figure 4) of the lower boundary
could be different from the normal stress at the junction (B) with the unmachined surface.
In particular, we may assume that the magnitude of p is a fraction C of the normal stress at
B so that

20)
p = C s cosn

Equation 3 is still inadequate for estimating f; since the geometry of the TLB which, strictly
speaking, ought to be the path of integration is unknown. We will now explore the
possibility of using an assumed path of integration. One candidate path consisting of two
planes, namely planes 1 and 2, similar to the method adopted in orthogonal cutting [4] is
illustrated in Fig. 2b. Here, plane 1 is inclined to the cutting plane, P,, at an arbitrary angle
V¥,; wWhereas plane 2 is parallel to P,. In order to enable force estimation from such an
assumed path, equation 3 can be rewritten as

f; li{s(Akxum)/sinﬂk) * PAJ]* 4 21
k=1

s{(A,Xu,)/sind, + (A,Xu,)sin, + CcosnA} *u; + p,(A,*u)

where
® A, and A, are the area vectors of planes 1 and 2 in the assumed path of integration,
® p, and p, are the mean normal stresses on planes 1 and 2 respectively given by
p;=C s cosn, and p,=p,, (of unknown magnitude),
® 0, and 0, are the angles between vectors A, and u,,, and, between A, and u,, respectively.

We note that equation 21 contains the parameter p,, of unknown magnitude. However, if we
confine the prediction to a force component (such as f;, f,,, f; or f)) parallel to the cutting
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plane, P,, the term A,*u; will clearly vanish (since, by definition, A, is perpendicular to plane
P, while u; is parallel to plane P,) so that

f; = s{(A,xu,)Ising, + (A,xu,)/sind, + C cosnA}*u, :ul|P 22

Equation 22 implies that the force estimate, f, is a function of the orientation of the
deformation plane, P,, More importantly, the presence of terms sinf, and sinf, in the
equation implies that the reulting f; estimate is path dependent, i.e. it depends on the
prevailing geometry of the lower boundary of the primary deformation zone. In fact, it can
be easily demonstrated that there is no deformation plane passing through V, which results
in the sinf, and sinf, terms vanishing from equation 22. It is therefore concluded that the
condition that progressive deformation in the primary deformation zone should occur in a
plane (see assumption A8) automatically precludes us from finding a path independent
solution to oblique cutting. In contrast, if we allow the assumption that deformation could
occur over a curved surface (still passing through V,), it is possible that we could arrive at
a path independent solution to the problem. However, such an analysis would require us to
have the knowledge of the exact geometry of the TLB. Since we do not know the exact
geometry of the TLB, we now examine the feasibility of finding an approximately path
independent solution to the problem. We know from [4] that there exists a path independent
solution to the problem when i=0. All that is required then is to find an acceptable
deformation plane and check if the resulting errors are within acceptable limits. (It may be
noted that in [5] Venuvinod had used a deformation plane normal to P..)

We now propose the "Effective Plane", P, as a candidate for the deformation plane P,, i.e.
P,=P, We base our arguments on intuition. Early metal cutting literature (in particular,
[2]) had often invoked the effective plane in explaining some empirical observations from
single edge oblique cutting. Shaw defines the effective plane, P,, as the plane parallel to the
initial work velocity, V, as well as the final chip velocity, V.. Note that this definition
implies that P, is also parallel to V,. Since the initial and final velocities of a work material
element passing through the primary deformation zone are contained within P, it is
reasonable to assume that the entire progressive deformation of the element occurs within P,

Thus, replacing u,, with the unit normal vector, u,, to P,, equation 22 can be rewritten as

f; = sl{(A/sinf)+(A/sinb,)} Xu,,, + Ccosng Al*u, :u, |2, (23)

where 7,;" is the magnitude of 5, when P, is taken parallel to P, and 6, and 6, are the
angles A; and u,,, and, A, and u,, respectively.

Equation 23 can be further simplified by noting and incorporating the following observations
based on the geometry of chip formation :

@® The area of Merchant shear plane, 4, is given by

A = L (24)
cosi sing,

@ Since the bounding edges of the chain of planes 1 and 2 used in approximating the true
lower boundary of the shear zone are common with those of the Merchant shear
plane, we have
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A +A =A =Au 25)

m

where u,, is the unit vector normal to the Merchant shear plane, P,.
(This is in fact true whatever the length of chain of planes used to approximate the TLB)

@® From the definition of P, and the relative geometries of planes P, and P, (Merchant
shear plane) we note that

A, Xu,,Ising, = A (u,Xu,) /sind = Au, (26)

where u,, is the unit vector in the direction of the shear velocity vector, V,, on the
Merchant shear plane and 6, is the angle between u,, and u,,,.

® We can estimate 7,, using the following equation :
tani cos(45°-a,)-tany, sind5°

.8 = arctan{ ] 27)

cosa,
® We now arbtrarily assume that (we will examine later the error caused by this
assumption)

A, / sing, + A, / sinb, = A,/ sinf, (28)

® Since A, must be normal to P,, we have A,*u,=0 : (u; | P,) so that we can make the
following vector transformations

CcosngA, * u, = Ccosny(A,+A) *u; = CcosnzA, *u, :ulP, A, Lu 29)

As a consequence of the above relationships, it can be shown that

[ = sA{(u, *u) + Ccosn(u,*u)} :ulP, (30)

Equation 30 provides an approximate but path independent solution to the problem of
estimating f. The estimates of f; obtained from equations 23 and 30 would clearly be
identical when the TLB is identical to the Merchant shear plane. In practice, however, the
TLB would deviate in geometry from the Merchant shear plane. Since the range of likely
values of ¥, (the acute angle between P, and plane A, with reference to equation 23) is ¢,
to 45°, we may compute f. and f; estimates from equation 23 for this range of y,, and
compare them with the corresponding estimates from equation 30. When such a procedure
was applied to the empirical data reported in [6] for machining aluminium alloy with single
edge oblique tools, it was found that the force estimates were within +3% of each other even
when i=5(. For practical purposes, this is clearly an acceptable range of error.

Now taking u; in equation 30 to be successively parallel to f;, f,, f; and f; and evaluating the

corresponding scalar products in terms of the geometric data set {i, ¢, and 7,,} it can be
shown that

fi = SA siny_, (31)
fn = A, (cosn,, cosp, + C cosny, sing,) (32)

f, = 5A,(cosn,,cos$,sini -sinn,,cosi + Ccosn,sing,sini) (33)
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f, = s4,(cos¢, + Ccosn,y,sing,cosi) 34)

where ¢, is the effective shear angle {= arccos(V *V) : shear angle measured in the efeective
plane P} is given by

¢, = arccos(cosn,,cosp cosi + sinny_ sini) (35

Note, when i=0 (and, therefore, 7,,=0), equation 34 reduces to the corresponding equation
for orthogonal cutting (see equation 1). Thus, Rubenstein’s solution to orthogonal cutting
[4] is a specific case of the solution to oblique cutting developed here.

7. ESTIMATION OF THE THRUST FORCE COMPONENT, f,

Equation 30 is not useful for estimating the thrust force component, f, because of the
unknown magnitude of p,, which acts in the direction of f,. However, if we assume that the
condition of collinearity between V, and the friction force at the chip/tool interface is obeyed,
it is possible to derive the following equation for estimating f, from the previously estimated
magnitudes of f; and £, which are not influenced by p,, (this condition and the following
equation are implicit in the oblique cutting analyses described in [1,2 and 5])

[, = fil(tany cosa) - f, tana, (36)

8. EXPERIMENTAL VERIFICATION OF THE NEW MODEL

We will now test the force predictions made in section 6 against experimental data. In
particular we will use the data on single edge oblique cutting of an aluminium alloy, copper
and mild steel presented in [6] and further experimental data (reproduced in Table 1)
obtained by the present authors while cutting another aluminium alloy. The experimental
procedure used in the further experiments was identical to that adopted in [7]. Chip
thicknesses, chip flow angles and cutting forces were measured while dry cutting with a
range of tool geometries (i = 0 to 50°, normal rake angle «,=25 and 30°, ¢,=0.05-0.175
mm). Edge forces were removed from the measured force components by the method used
in [6] to yield the magnitudes of £ and f,.

On preliminary analysis none of the above data sets was found to satisfy the condition of
collinearity between V, and the friction force at the chip/tool interface. Hence, we will not
attempt to test the prediction of £, and confine our discussion to testing the prediction of force
components parallel to the cutting plane, P.. With this objective, the following procedure
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Table 1. New Oblique Cutting Data While Machining Aluminum Alloy.
(HSS Tool, Dry Cutting, Work Width 6mm)

Normal rake 25° Normal Rake 30°

(.T:Im) (d::g) . 1. 5 fi i * N fe A e
(deg)  (deg) (N MN) (N) | (deg) (degy (N) (N) (N

.050 0 31.4 0 169 0 29 35.5 0 174 0 19
.075 0 32.0 0 269 0 49 35.5 0 254 0 29
.100 0 34.0 0 329 0 54 35.5 0 334 0 39
125 0 33.0 0 429 0 74 35.5 0 424 0 49
.150 0 33.0 0 519 0 89 35.5 0 494 0 54
175 0 35.1 0 599 0 104 35.5 0 604 0 69
.050 10 32.0 10 193 16 20 35.5 11 145 20 16
.075 10 35.1 10 263 26 45 35:5 12 245 30 27
.100 10 33.0 10 343 26 60 36.6 11 320 40 37
A25 10 34.0 9 463 36 80 36.6 11 420 50 47
.150 10 34.0 9 543 46 85 37.7 10 460 60 52
475 10 35.1 10 633 56 90 37.7 10 550 70 62
.050 20 33.0 18 166 53 17 37.7 18 183 38 22
.075 20 34.0 20 236 68 27 37.7 20 253 53 34
.100 20 35.1 20 336 88 37 37.7 16 338 88 44
125 20 35.1 24 436 108 52 38.8 20 418 88 52
150 20 35.1 16 506 138 57 38.8 19 498 103 64
175 20 35.1 21 566 168 62 38.2 18 618 128 79
.050 30 34.0 30 191 55 29 37.7 30 141 50 9
075 30 35.1 30 261 75 44 37.7 33 236 67 21
.100 30 36.1 32 341 95 59 37.7 28 316 92 23
.125 30 37.1 34 401 115 69 37.7 27 386 117 26
.150 30 38.1 36 521 150 84 37.7 27 446 137 31
.175 30 37.1 34 631 180 104 37.7 29 536 167 41
.050 40 35.1 35 217 87 21 37.1 40 151 63 4
.075 40 36.1 36 297 122 41 38.8 38 276 116 14
.100 40 371 44 407 152 66 38.8 36 361 151 14
125 40 3.1 37 497 192 66 38.8 36 436 173 19
.150 40 38.1 36 647 242 106 38.8 39 521 218 21
i o 40 38.1 37 707 287 81 38.8 36 596 248 24
.050 50 37.1 45 164 75 2 40.9 46 195 106 -4
.075 50 38.1 51 299 190 12 40.9 46 220 116 -1
.100 50 39.1 48 299 190 12 39.8 52 350 176 -1
125 50 40.1 46 444 270 7 39.8 47 400 211 -1
.150 50 40.1 50 529 310 17 40.9 47 500 261 -6
.175 50 41.0 44 659 375 17 40.9 47 605 321 -6

Note: The forces reported are obtained after removing edge forces.
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Fig. 5 Correlation Between Forces as Predicted by Equation 30 and Measured Forces

Table 2 Results Obtained from the Application of the TLB Model to Experimental Data

work material S c Correlation Data from

(Mpa) Coefficient, r | Reference

Aluminium Alloy 1 233.2 0.88 0.988 new data
Aluminium Alloy 2 126.8 0.65 0.988 7
Copper 353.9 0.02 0.989 7
Mild Steel 460.2 0.10 0.981 7§

is applied with respect all the data obtained while machining each work material :
® Firstly, the magnitudes of 4,, and 7, are computed using equations 24 and 27

respectively.
® The magnitudes of f; and f,, are estimated from the measured fiand £, as
fi = fsini - fcosi 37
fon = fcosi + fsini (38)

® Next, a linear regression is performed with the coefficient of s in equation 31 taken along
the x axis and f; along the y axis such that the resulting regression line has zero

y intercept. The slope of the regression line will then give the estimate of the shear
flow stress, s, on the TLB.

® Next, equation 32 is rearranged as
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f., - sA cosncose, = CsA,cosnpsing, (39

so that the magnitude of C may be estimated by a similar regression between the
coefficient of C and the magnitude of the term on the left hand side of this equation.
(It may be noted that the hypothesis that the magnitude of C is a material constant is
implicit in this procedure.)
@ Next, the magnitudes of s and C thus obtained are assumed to be constant for a given
work material and used to predict f;, f.,, f; and £, from equations 31 to 34 respectively.

Figure 5 shows the correlation between the predicted and actual magnitudes of f; and £,
for the four different work materials used in the tests. Table 2 summarises some key
results.

The following conclusions may be drawn from these results :

@ The correlation between predicted and actual force components is excellent when the
optimum magnitude of C is used.

@® The magnitudes of s and C are found to be constant for a given work material despite
the wide range of obliquities and uncut chip thickenesses (and some variation in the rake
angle) covered by the tests. This means that the new model of oblique cutting enables
the prediction of forces parallel to the cutting plane purely from a prior knowledge of
material dependent parameters s and C, and a knowledge of tool and chip geometry.
Note further that the new model, unlike models based on Merchant shear plane, does not
presuppose any knowledge of friction conditions at the chip/tool interface.

@® A detailed examination of the data obtained at each cutting condition has shown that the
magnitude of C is quite sensitive to variation (or error) in .. Further, it appears that
C cannot be evaluated with confidence purely from orthogonal cutting data (this might
explain why Rubenstein did not identify the role of C in [3]). A consequence of these
observations is that C needs to be determined from oblique cutting data itself which, at
first glance, appears to contradict the claim that the proposed model is capable of
predicting forces in oblique cutting. However, since the magnitude of C is insensitive
to changes in , and i (and, to some extent, changes in the rake angle), it is possible to
determine the magnitudes of s and C from a limited set of oblique cutting experiments
and the values so obtained used to predict cutting forces at all other oblique cutting
conditions.

® From the magnitudes of C as listed in Table 2 for different work materials, it is seen that
the normal stress distribution on the TLB tends to be significantly more non-uniform
(tending towards more tensile stresses) for copper and mild steel than for aluminium
alloy. Further research is needed to confirm this. observation and understand its full
implications.

9. CONCLUSIONS

A new analysis of single edge oblique cutting based on a model of the geometry of and stress
distributions on the true lower boundary of the primary deformation zone has been presented
above. Equation 30 may be used to predict the force components parallel to the cutting plane
with reasonable accuracy from a knowledge of the flow stress, s, of the work material, the
uncut area, the chip thickness and the chipflow angle. Further, the thrust force component,
f,, can be predicted provided the principle of collinearity between the tangential stress and
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tangential velocity at the tool/chip interface is satisfied. It however turns out that such
collinearity is rarely obtained in empirical data on oblique cutting. Further research is
needed to resolve this problem.

The model is an improvement over previous attempts aimed at extending Rubenstein’s
approach to modelling orthogonal cutting [3,4] to the case of oblique cutting. As noted
earlier, models based purely on the Merchant shear plane , such as in [1,2], have no ability
to predict any of the cutting force components. The model developed in [7], although
capable of predicting the cutting forces, does not attempt to model the actual TLB in oblique
cutting. Instead, it relies on the concept of equivalent orthogonal cutting to enable the
utilisation of a TLB based solution to orthogonal cutting. Further, this model requires that
not only the flow stress, s, of the uncut material but also the shear stress, 7, on the Merchant
shear plane be taken as a material constant. These aspects diminish the elegance of this
approach. The model developed in [5] relies on an intuitive idealisation of the TLB in
oblique cutting and lacks the rigour of the present approach. Further, the predictive ability
of this model in terms of f; is not satisfactory.

The new model has demonstrated a rigorous and direct approach to the modelling of TLB
in oblique cutting. In particular, it has attempted to systematically extend the fundamental
notions contained in Rubenstein’s TLB based model for orthogonal cutting [3 and 4] to the
three dimensional situation prevailing in oblique cutting. The goal of achieving an exact and
path independent solution to oblique cutting, however, continues to elude us.

The present work has observed that it is important to recognise the significance of the non-
uniformity of the normal stress distribution on the TLB. This aspect was left unaddressed
in the original orthogonal cutting model [3 and 4]. Further research is needed to investigate
the full implications of this observation.
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