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Abstract

C 2t

Unlike the shear stress on the Merchant shear plane, the shear stress on the lower
boundary of the primary deformation zone in cutting must be a material constant. Thus,
modelling of orthogonal cutting based on the lower boundary has been particularly successful
in predicting the power component of the cutting force. This paper extends this approach to
oblique curting. It is assumed that the progressive deformation of the work material into chip
material occurs within the effective plane. An application of plasticity theory shows that
certain simplifying assumptions concerning the three dimensional stress distribution on the
lower boundary can be made with acceptable accuracy. The resulting model is capable of
predicting the two main cutting force components lying in the cutting plane.

1. Introduction

A cutting operation in which the cutting
edge deviates from the normal to the cutting
edge by an angle of inclination, i, is said to be
oblique. Chip formation and cutting mechanics
in such operations tend to be three
dimensional. Since a vast majority of cutting
operations in practice are oblique to some
degree, the prediction of cutting forces in such
operations is a problem of practical
significance.

Classical models of oblique cutting [1,2]
have been based on the utilisation of the notion
of Merchant shear plane. In these models the
prediction of any of the three cutting force
components requires a priori knowledge of the
mean shear stress, 7, on the shear plane and
the apparent friction angle, A, at the tool/chip
interface and the chip thickness.
Unfortunately, both 7 and A happen to depend
on cutting conditions in addition to the
tool/work material pair which often means that
they cannot be known a priori. Thus, models
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based purely on the "Merchant" shear plane
have been unable to predicr any of the cutting
force components even in the two dimensional
case of orthogonal cutting (when i=0).

In contrast, the analysis of orthogonal
cutting based on the lower boundary of the
shear zone, as proposed by Rubenstein [3], has
been able to predict the power component, f,,
of the cutting force merely from known
magnitudes of the flow stress, s, of the work
material and the chip thickness. This has been
possible because the magnitude of s is a
property of the work material prior to being
subjected to any cutting deformation.
Therefore, unlike 7, s must be a true material
constant.

Previous attempts to extend the lower
boundary concepts, which have proved highly
successful in orthogonal cutting [3], to oblique
cutting (for example, as in [4]), had relied on
intuitive definitions concerning the geometry of
and the stress distributions on the lower
boundary. The present paper aims to present a
more rigorous approach to extending the
fundamental notions behind Rubenstein’s model
of orthogonal cutting [3] to the case of oblique
cutting.
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DB Merch. Shear Plane DTCB True Lower Boundary
DAB Assumed Path of Planes DTC'B An Assumed Boundary Partly
(AB:Pi. 1, DA:PL 2) Overapping the TLB

Fig. 1 LB of the Shear Zone In Orthogonal Cutting

2. The Lower Boundary of the Shear Zone
in Orthogonal Cutting

Consider Fig. 1 which illustrates
Rubenstein’s model of orthogonal cutting [3].
Curve BD represents the true lower boundary
(TLB) of the primary deformation zone
whereas straight line BD represents the
Merchant shear plane. Basing his arguments
on the plasticity conditions near B, Rubenstein
noted that, at B, the TLB must meet the
unmachined surface at 45° and the normal
stress on the TLB should be equal to the shear
stress, s, which must be uniformly distributed
over the TLB. Likewise, on the basis of the
condition of chip/work material separation, it
was noted that the TLB must be parallel to the
cutting plane in the vicinity of D. Further,
following a rigorous application of translational
equilibrium criteria to the tool/chip/primary
deformation zone/workpiece system,
Rubenstein made the following observations:
"Provided the stresses (normal stress, p, and
shear stress, s) are uniformly distributed, the
force components f, (parallel to the cutting
speed) and f, (parallel to the normal to the
machined surface) are path independent, i.e.
along any boundary joining B and D, including
the Merchant shear plane, the same force
components will be obtained when the
magnitudes of the stresses (p and s) are
specified. Of the infinity of paths joining B
and D, one of these is the TLB..., the force
components acting on the TLB may be
determined by calculating the force components
along an arbitrarily chosen boundary joining
the extremeties of the TLB provided (i) the

stresses which are assumed to act on the
arbitrarily chosen boundary are the same as
those acting on the TLB, and (ii) the stresses
are uniformly distributed"”.

Rubenstein next observed that if the
assumed boundary (BC’TD) had a portion
(TD) coincident with the TLB (BCTD) and the
TLB is subjected, in its non-coincident part, to
uniformly distributed stresses, the force
components calculated by integrating over the
assumed boundary will be the same as those
calculated by integrating over the TLB,
irrespective of whether or not the assumed
boundary has any physical significance (see
Fig. 1).

Based on this premise, Rubenstein chose an
assumed boundary represented by planes BA
and AD which are tangential to the TLB at the
latter’s extremities B and D respectively.
Following the above arguments, (i) the shear
stress on BA and AD were taken to be uniform
and equal to s, (ii) the normal stress on BA
was taken to be uniformly distributed and equal
to s, and (iii) the normal stress on AD was
taken to be of unknown distribution and
magnitude. Integration of these stresses across
path BAD yielded an expression for f, which
was a function of just s, the uncut area and the
Merchant shear angle. This expression has
since been shown to be quite accurate and
robust in the light of extensive experimental
data obtained in orthogonal cutting conditions.

3. The TLB in Oblique Cutting

We now examine how the basic notions
contained in Rubenstein’s model of TLB in
orthogonal cutting [3] may be extended to
single edge oblique cutting. Fig. 2 illustrates
the proposed approach. Plane B’B"D"D’ is the
Merchant shear plane. The TLB is a curved
surface joining B’B" and D’D". As in [3], the
TLB is assumed to (i) be tangential to the
cutting plane in the vicinity of the cutting edge
and (ii) meet the unmachined surface at the
other end, B’B", at an angle y when measured
in the plane normal to the cutting edge. The
exact geometry of the TLB between the two

104



extremeties (B’B" and D’D") is ofcourse
unknown. For the purpose of identifying the
direction of shear on the TLB, it is assumed
that the progressive transformation of the
velocity V of the uncut work material into
velocity V. of the chip material takes place
within the effective plane (EP) i.e. within the
plane containing vectors V and V_, (and,
therefore, the shear velocity vector, V,, on the
Merchant shear plane). Thus, the curve of
intersection DTB between the TLB and the
effective plane may be assumed to represent
the direction of shear along the TLB.
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Flig. 2 LB of the Shear Zone In Oblique Cutting

The authors have recently undertaken a 3D
stress analysis of the above configuration
assuming that (i) the work material is a
perfectly plastic and isotropic continuum, and
(ii) line B’B" is parallel to the cutting edge [5].
The analysis is too lengthy to be presented in
this brief paper. However, the analysis has
shown that the following conclusions may be
drawn within acceptable accuracy (within 2%
error):

(1) At the free surface (i.e. at B’B") the
TLB is inclined to the surface of the uncut
workpiece at 45°, 1.e. ¥ = 45°.

(i)  The shear stress along the TLB at B’B"
occurs in a direction parallel to the velocity of
shear along the TLB at B’B".

(iii)  The magnitude of the normal stress, p,
on the TLB at B is equal to s.cosn,s, where 7,5
is the angular deviation of the shear vector on
the TLB at B from the normal plane when
measured in a plane tangential to the TLB at B.

The following further assumptions are

motivated by arguments similar to those
presented in [3] for the case of orthogonal
cutting :

(1) The shear stress over the TLB is uniformly
distributed and is directed along the curve
DTB.

(1) In the vicinity of the cutting edge, a portion,
T’T"D’D", of the TLB is parallel to the cutting
plane. The normal stress, p,, on this portion
is of unknown magnitude.

(i) The normal stress on the portion
B’B"T"T’ of the TLB, which is not parallel to
the cutting plane, is uniformly distributed and,
by virtue of conclusion iii above, has its
magnitude equal to s.cosn,;. These stresses
need to be integrated over the TLB in order to
estimate the cutting forces. However, this
integration requires complete knowledge of the
geometry of the TLB which, unfortunately, is
not available. A similar problem was faced by
Rubenstein in the case of orthogonal cutting
which prompted him to utilise the notion of
path independence in [3]. We will explore the
feasibility of such a notion in the context of
oblique cutting in the next section.

4. Force Prediction in Oblique Cutting

Consider an area element of area dA
located on the TLB. Let u,, be the unit vector
normal to the area element. Let s and p,, be
the shear and normal stresses on dA. Clearly,
Pas acts in the direction of u,, so that
Paa(dA)uy, is the vector representing the
normal force on dA. The shear stress however
is assumed to be directed along the line of
intersection of the effective plane with the area
element. Thus the shear force vector on dA is
given by s(dA){(u, Xxugp)/sinf,,} where ugp is
the unit vector normal to the effective plane,
"x" represents the vector product operation and
6,4 is the angle between ugp and u,,. We now
desire to find the confribution, df;, of the
normal and shear forces arising from dA to the
total force f; in the direction of an arbitrary unit
direction vector u,.  Clearly this can be
achieved using the scalar product operation (*)
as follows :
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df;={s(dA)(ugyXugp)/sinf s, } *u;+pas (A )u,, *u;
= 5{(dA/sinf,)X (Ugp) }*u;+Dea(dA*u) (1)

where dA is the area vector of the area element
dA.

The total force f; is obtained by integrating
df; over the entire area of the TLB as

f;=[ { 1.5{S(dA/sinf,)Xugp+DendA}]*u; (2)

The above equation is still inadequate for
estimating f; since the geometry of the TLB
which, strictly speaking, ought to be the path
of integration is unknown. We will now
explore the possibility of using an assumed
path of integration. One candidate path
consisting of two planes, namely planes 1 and
2, similar to the method adopted in orthogonal
cutting [3] is illustrated in Fig. 1. In order to
enable force estimation from such an assumed
path, equation now can be rewritten as

f;=[Z,-, ,{s(A/sinf)xug, +pA,}]*u; ©)

where A, is the area vector of and p, the
magnitude of the normal stress on plane k in
the assumed path and 6, is the corresponding
value of 6.

Note that since the bounding edges B’B"
and D’D" of this path are common with the
bounding edges of the Merchant shear plane,
B’B"D"D’, the sum, Ik=,,A,, of the area
vectors of planes 1 and 2 must equal the area
vector A, of the Merchant shear plane, i.e.
Ly=12A;=A,. Thus, but for the presence of
the term "sinf,", equation 3 should yield a path
independent estimate of f.  We will now
explore the deviation from path independence
introduced by the term siné,.

Consider now the estimation of a force
component which is parallel to the cutting
plane from equation 3. The area vectors, A,,
are easily determined from the chip geometry.
The value of s is assumed to be known a
priori. Following the conclusions described in
the previous section, the magnitude of p on
plane 1 may be taken equal to s.coss,g. Since
the desired force is parallel to the cutting

plane, the unknown normal stress p,, on plane
2 has no effect on the desired force. (Note that
force f, cannot be estimated by equation 3, just
as in the case of orthogonal cutting [3], since
its magnitude is a function of the unknown p,).
Thus, for a given path, equation 3 can provide
estimates of the force components f, (parallel to
the cutting speed vector, V) and f; (parallel to
the normal to V in the cutting plane) simply
from a knowledge of s, uncut area and chip
geometry. A numerical evaluation of f, and f|
from equation 3 for the range of paths obtained
by varying y in the range O to 80° has shown
that the estimates remain fairly constant. The
theoretical maximum error has been found to
be of the order of 10% while the actual error is
expected to be much smaller. More
interestingly, it has been been found that the
term L., ,(A,/sinf) could be approximated
with reasonable accuracy by (A,/6,). Thus,

f, = s{(A,/sinf,)xug,+cosn,zA, } *u;
: for direction j in the cutting plane 4)

It must be reiterated that although the force
estimates from equation 4 are only
approximate, the errors introduced are within
the acceptable range for the practical purpose
of estimating force components parallel to the
cutting plane. Interestingly, when obliquity
i=0, equation 4 yields the path independent
solution presented for f. in [3]. Future
research may be directed to the identification of
a truely path independent three dimensional
solution to the problem - if such a solution does
indeed exist in the case of oblique cutting.

5. Experimental Verification of the New
Model

The predictive ability of equation 4 has
been tested against previously published
experimental data on single edge oblique
cutting of an aluminium alloy, copper and mild
steel [6] and further experimental data obtained
by the present authors while cutting another
aluminium alloy [5]. The experimental
procedure used in the further experiments was
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identical to that adopted in [6].  Chip
thicknesses, chip flow angles and cutting forces
were measured while dry cutting with a range
of cutting tools (i = 0 to 50°, normal rake
angle=25 and 30°, t,=0.05-0.175 mm). Edge
forces were removed from the measured force
components by the method used in [6] for
yielding the magnitudes of f. and f. The
calculation method is summarised in the
Appendix.

Fig. 3 shows the observed relationship
between the coeffcient of s in equation 4 and
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Fig.3 Comelations Between Predicted and Measursd Forces

the experimentally obtained forces for the case
of machining aluminium alloy reported in [5].
It is clear from the large magnitude of the
linear correlation coefficient (overall r=0.98)
that the model exhibits a high degree of
predictive ability with regard to both f, and f|
while machining aluminium alloy under the
range of cutting conditions covered by Fig. 3.
Table 1 summarises the results obtained

Tab.1 Results obtained by applying eq(4)
m’k. orm. f: f, |overall
at. Rake 's[r | s[r|s]r|l]
30° [236].98 [203].99
Al (25 237[96 23j§9’ 215.98] 5
30° [135].96 |118].98]132].98] 6

Cu | 30° [249].92]189[.98 249/.91
MS | 20° [355].93 253‘|T§3'348.9s 3

where s: MPa; r: correlation coefficient

from the four sets of test data. Note the
magnitudes of s derived from f. data. These
magnitudes, which are for i>0, are close to
the corresponding magnitudes of s derived
from f. data obtained while orthogonally

cutting (i.e with i=0) the same work material.
It may be concluded on the basis of this
observation that the predictive power of the
new model with respect to f; is good. However,
the result is not as good when a similar
criterion is applied to prediction with respect to
fi. In particular, while machining copper or
mild steel there are significant mismatches
between the magnitudes of s derived from f,
and f, data.

A probable reason for the poorer
performance of the model with regard to f is
that the assumption of uniformly distributed
normal stress, p, might not be strictly valid
over the portion B’B"T"T’ of the TLB which is
non-coincident with the cutting plane. This
aspect has been examined in detail in [5] where
the normal stress on the non-coincident portion
of the TLB was taken to be a fraction C of
8.cos7,p (equation 4 assumes that C=1). It was
demonstrated that, for each combination of
work material and normal rake angle, one can
determine a unique value of C such that there
is complete agreement between the magnitudes
of s derived from f, and f, data. In particular
it was shown that the magnitude of C for
aluminium was higher than that for mild steel
which, in turn, was higher than that for copper.
Thus, provided the chip formation geometry
and the magnitudes of s and C for the work
material are known, the model based on TLB
can be used to predict the magnitudes of both
f. and f; with a high degree of confidence.

In the above, we have presented a new
model of oblique cutting which is based on a
rigorous analysis of the TLB and is capable of
predicting cutting force components parallel to
the cutting plane in oblique cutting. As noted
earlier, models based purely on the Merchant
shear plane, such as in [1,2], have no ability to
predict any of the cutting force components.
The model used in [6], although capable of
predicting both f, and f,, requires that not only
the flow stress, s, on the TLB but also the
shear stress, 7, on the Merchant shear plane be
taken as a material constant. The requirement
to consider 7 as a material constant diminishes
the elegance of this approach. The model
developed in [4], which was also based on an
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analysis of the TLB in oblique cutting, utilised
an intuitively defined path for stress integration
and lacks the rigour underlying the present
model.

6. Conclusion

A new analysis of single edge oblique
cutting based on a model of the geometry of
and stress distributions on the true lower
boundary of the primary deformation zone has
been presented above. The model is an
improvement over previous attempts aimed at
extending Rubenstein’s approach for modelling
orthogonal cutting [4] to the case of oblique
cutting. Equation 4 may be utilised to predict
the force component f, with reasonable
accuracy from a knowledge of the flow stress,
s, the TLB of the work material, the uncut
area, the chip thickness and the chipflow angle.
However, in order to predict both £, and f, with
reasonable accuracy, equation 4 needs to be
modified to include a constant C which
charactarises the degree of non-uniformity of
the normal stress distribution on the TLB.
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Appendix

Given

uncut chip thickness

chip thickness

workpiece width

normal rake angle

angle of obliquity

n. = chip flow angle

s = flow stress of the uncut work material

= ang
hnn

i

¢, = normal shear angle (Merchant)
A, = Area of Merchant shear plane
uy = unit vector parallel to the cutting

velocity
uy, = unit vector parallel to the chp velocity
u, = unit vector normal to the Merchant
shear plane
u;, = unit vector along f,
u; = unit vector along f

Then to compute f, and f; from equation 4 use
the following procedure :

¢, = arctan{cosa,/(t,/t; - sina,)} (Al)
A, = bt,/(cosi.sing,) (A2)
n,= arctan[{tani.cos(w/4-c,)-

tany sin(w/4)}/cosa,] (A3)
P =s.COSNp (A4)

Compute the direction cosines of various unit
vecors along axes (X, y, z) respectively in
Fig. 2 as follows:

uy : (sini, -cosi, 0) (AS)
Uy, : (siny,, -cosnsina,, COSn.COS,) (A6)
u, : (0, sing,, -cosg,) (A7)
e = i (A8)
ug : (-cosi, -sini, 0) (A9)
A, =A,u, (A10)
ug, = (uyxuy.)/sin{arccos(uy*uy,)} (A11)

For computing f;, take u,=u,, in equation 4.
For computing f,, take u;=u, in equation 4.
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