Int. J. Mach. Tool Des. Res. Vol. 20, pp- 29 44, Pergamon Press Ltd. 1980. Printed in Great Britain.

THE RELATION BETWEEN TOOL GEOMETRY AND THE
TAYLOR TOOL LIFE CONSTANT

W. S. Lau*, P. K. VENuvINODT and C. RUBENSTEINT
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Abstract — In an earlier publication, a relation between tool geometry i.e. rake angle « and clearance angle ff and
Taylor Constant was proposed and the experiments performed provided data which agreed well with the effect of f#
but not with that of «. A semi-analytical model is developed here which tries to incorporate the effect of « on the mean
temperature at the flank wear land by expressing the relevant relationship in a linear form. Further, it is shown that
flank wear is to be considered as a combination of “lump” and “layer™ types of wear. The relatively unused method of
high speed steel-mild steel tool-work thermocouple technique is successfully used to obtain temperature data. The
experimental results agree well with the model.

INTRODUCTION i

THE ROLE of Taylor’s equation in the determination of the economics of machining is well
known. The index n and constant C of Taylor’s Tool Life equation (VT" = C) are the
parameters through which cutting tool material and the tool geometry influence the cost of
machining and machining rates. A review of relevant literature indicates that the magnitudes
of n and C have generally been determined empirically. While there are a number of models
proposed for describing the wear of tool flank, it is only recently [1,2] that an attempt has
been made to relate, analytically, cutting tool geometry to Taylor constant C. It has been
shown, [2] that

C o [(cot B — tan o)"F(x, B)" 5] 7", (1)
where ‘

o« is the rake angle,
B is the clearance angle,
F (e, B) is a suitable function of o and f

and

e is the index of cutting speed V' when the mean flank temperature.
0, is related to it by the equation 6, = const V*.

Experiments showed excellent correlation with equation (1) when only the clearance angle
B was varied [2]. When the rake angle a was varied, however, correlation was not so good,
indicating that F(a, f) was strongly dependent on «. The present paper is the result of an
attempt at providing a greater understanding of F(x, ) and thereby of the relationship
between rake angle and Taylor constant. The work depends basically on the earlier
model [1] but tries to include the effect of rake angle on the mean flank temperature 6.

DESCRIPTION OF TOOL WEAR MODEL

A model for the flank wear of cutting tools is now developed starting from the assumptions
made in Ref.[1].

* Senior Lecturer, Department of Production & Industrial Engineering, Hong Kong Polytechnic, Hung Hom,
Kowloon, Hong Kong.

T Senior Lecturer, Department of Production & Industrial Engineering, Hong Kong Polytechnic, Hung Hom,
Kowloon, Hong Kong.

1 Professor, Department of Mechanical Engineering, Ben Gurion University of the Negev, P.O.B. 653, Beer
Sheva, Israel.

Currently: Senior Visiting Research Fellow, Department of Mechanical Engineering, U.M.LS.T., Manchester.

29



30 W. S. Lau, P. K. VENuviNOoD and C. RUBENSTEIN

(i) Over the surface of the flank wear land of length I, and width W, a mean pressure, p,,,,
and a representative temperature, 6., can be defined.

(i1) Contact between the flank face of the tool and the machined surface occurs over n,
asperities per unit apparent area of contact.

(ii1) All asperity contacts are circular and of radius r, when the tool and the workpiece are
in contact under a pure normal load, L, the normal load occurring during cutting (see
equation 5 below).

(iv) The volume of a wear particle is given by k,r*h where r is the radius of the wear
particle, h is its height and k, is a factor depending on its shape.

(v) The radius r may be expressed as gr, where g is a factor depending on the degree of
adhesion and ductility of the deforming asperity.

(vi) The height h is proportional to the radius r and is given by

r
h=~h, v (2)
where V is the cutting speed [1].
The rate of volume wear at the tool flank, Q, may be expressed [1] as

¢k, 3 H,,
— I —_—
0 = pg h W IH (3)

where H,, is the workpiece hardness,
H is the hardness of the deforming asperities,
Gy & pm/ Hrm
and p is the probability of a wear particle forming when a junction is broken.
The factor g*h; may be related to the properties of the work material [1] as

g*hy = Riao05h, (4)

where R, and o, are the percentage reduction and degree of adhesion of the deforming
asperities at room temperature 6, and a, b, e are suitable constants.
The normal load L on the flank wear land is given by

L=p,Wli,. (5)
The hardness of the asperities H may be related to temperature 6,[1] as
9
H=H, (g—f) ; 6)

where H, is the tool hardness at temperature 6, and g, is a suitable constant.
Combining equations (3)-(6),

Q = K,6L , (M
where
= klRﬂaﬂhIP
‘" a09H,
and
q=e+g,.

Equation (7) agrees with Archard’s result [3], only if s constant or, if not constant, if the
wear mechanism is temperature independent. There it was shown that, for “lump” wear, wear
rate is proportional to load. In “lump” wear, the depth to which the material is torn at each
asperity is proportional to r,. This is equivalent to the condition h o r, assumed in the
foregoing analysis.
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Archard [3] also presents an analysis of the condition of “layer” type removal, the
definition of which is that the depth of torn material is independent of r, and shows that

Q o LOJS. [8}

Little experimental evidence is available today to attribute flank wear of cutting tools to
either “lump” or “layer” type of wear. In the later part of this paper, however, it will be
demonstrated that an assumption of pure “lump” type of wear leads to a discrepancy when
compared to experimental observations. It is therefore proposed to assume that flank wear
occurs as a result of a combination of “lump™ and “layer” types of wear. This condition may
be accommodated by modifying equation (7) as

Q = Kj6%L°, 9)

where

o may take a value lying in the range 0.75 (for pure “layer” type) to 1 (for pure “lump”

type).
and

K, q' are modified constants to take into account the changed conditions of wear.

It has been shown in[1] that Q is related to the rake angle « and clearance angle f§ as
Wi, di,

Q= (cotp —tana) dr

(10)

The temperature on the flank face is related to the mean temperature at the chip tool
contact area 6,[4]. For a given value of I, 6, may be expressed in terms of workpiece
hardness H,, cutting speed V and feed f as

0,aH2 V"W, (11)
Assuming, 8, oc 0, and including the effect of I, on 6,[1],
0, = KHLVY "W} (12)

where K, p, & n, y and § are suitable constants.
An expression for the rate of flank wear may now be obtained by combining equations (5),
9), (10) and (12).

di s : . )
d_tf = K\KTHE [Ty + o 1peie’+o-1ya’ (ot B — tan o). (13)

It is easy to demonstrate that at @ = 1 (“lump” removal), this equation reduces to the
equation for wear rate proposed in reference[1]. However, when @ = 1, equation (13)
indicates an increasing rate of wear dl/dt as I, increases. This is contrary to the known
nature of wear curves where, generally, the curve |  against time is either straight or convex
towards the time axis (see Fig. 1) in the steady state wear zone. This condition can only exist
when @ < 1. This justifies the assumption of combined “layer” and “lump” wear.

In Fig. 1 the onset of the secondary, “steady-state” wear region is shown as occuring at [ =
l; and its termination at I, = [,. Assuming that [, is small compared to the tool life criterion I,
= l,, we can integrate using the boundary conditions [, = Oatt = Oand I, = [,att = T (tool
life) and then compare the resulting equation with the Tay]or Tool Life equation

KT =C. (14)
It can be seen that
qgne =1 (15)
and

j@-o~&Weot f — tana) ™"

o= Kfanq'nH;q‘nfw‘n [:ap;(_}'_q'+ - llnp;m

(16)
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FiG. 1. Typical tool wear curve.

Following the procedure given in[1], it can be shown that ¢’ in the above equation is
equivalent to the index of cutting temperature in Schaumann-Schallbroch equation [5].
Thus,

T0¢ = Constant. (17)

If it is assumed that the factors other than (cot § — tan ) are constant, one has

Co(cot p — tana) ™™ (18)

Figures 2(a), (b) and (c) show the results obtained from tests on machining mild steel with
H.S.S. tools with f varying from 2 to 20° and with « = 10° [2]. It is seen that the correlation
with equation (16) is excellent. However, the index n obtained from equation (18) is 0.35
whereas the index of n as observed from the relationship between V and T for the same data
(see Fig. 3) was 0.41. Fig. 3 includes the results obtained by varying rake angle « in the range
10-30° at higher cutting speeds with air as cutting fluid. It is seen that there is no agreement
with equation (18) in this case. This indicates that the rake angle has a strong influence on
factors other than (cot f — tan «) in equation (16). F(x, f) in equation (1) is thus largely a
function only of a. The nature of this function is examined in the next section.

INFLUENCE OF RAKE ANGLE

The foregoing analysis is based on the assumption that, at a given cutting speed, the flank
temperature 6, and normal pressure p, = c,H,, are constant, irrespective of rake and
clearance angles. A little thought shows that this assumption is reasonable for varying
clearance angles within a limited range. However, as is well known, a variation in rake angle
causes a significant change in the mean temperature at the rake face 6,. Figure 4 shows a
typical relationship between 6, and o [6]. It appears that, within the range of rake angles
wherein the rate of decrease of rake face temperature with rake angle is relatively slow, the
relationship can be expressed by a linear expression of the form.

6!’ = gro(]- ifes mlu}{\"- {19}

where 6,, is the magnitude of 6, when a« = 0 and m, is a suitable positive constant.

In addition, an increase in rake angle reduces the path of conduction of heat from the rake
to the flank surface. The exact nature of this effect is unknown and no information is
available in the literature in connection with this aspect. It will be assumed, for the sake of
simplicity, that a linear relation between 6, and 6, exists for a given tool geometry. Thus, for a
fixed clearance angle, it will be assumed that

;= 4,0,(1 + mya) , (20)

where A; and m, are suitable positive constants.
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In view of the above factors equation (12) now takes the form

0, = KVef"sW'HEA0,,(1 — mya)(1 + m,a).
Proceeding as before one has the following equation in place of equation (18)
C x [(cot p — tan o) {(1 — mya)(1 + myx)} i)~

2D

(22)

Experimental studies show that the magnitudes of m, and m, are small so that the term

(I — mya) (I + mya) in the above equation can be replaced by (1 — m*a), where
m* = (my — m,), without significant error, so that

C o [(cot B — tana) (1 — m*x)* /"] ™"

MTDR 20.1 ¢

(23)
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EXPERIMENTS

Experiments were conducted to test equation (23) on annealed mild steel tubes (50.8 mm
0O.D., 2 mm wall thickness). The chemical composition of the specimens was 0.2%,C, 0.17%Si,
0.89%Mn, 0.064%;S and 0.015%P (hardness BHN115). Specimens from one production
batch were cut orthogonally on a Colchester Triumph 2000 centre lathe at a constant feed of
0.1016 mm/rev. The cutting tool material was MTM 4T high speed steel (hardness Rc65:
composition 0.8%C, 6.4%W, 4.3%Cr, 1.9%V, 5%MO), all of which were obtained from the
same production batch and were mounted in the same tool holder when used for the cutting
tests. The tool life criterion, [ + = |, adopted for all the tests was a flank wear land of 0.18 mm,
this value having been chosen so that for all the tests performed, the condition

Ll <l

was obeyed (Fig. 1)i.e. it was ensured that in all cases I, fell in the range of steady state wear.
Three series of cutting tests were performed. Table 1 gives the details of the test conditions.
Flank wear land was measured using a tool maker’s microscope. A tool-workpiece
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thermocouple technique was used to obtain a measure of the cutting temperature 6,,. The
measurement was made using a Keithley 616 digital Electrometer. The tool holder was
insulated from the machine. The positive lead of the electrometer was connected to the tool
while the negative lead was connected to the rear end of the spindle through a
graphite/copper brush. Care was taken to check that there was no parasitic e.m.f. at the
brush. The signals from the dynamometer and the electrometer were recorded on a SE
3006/DL u.v. recorder. The temperature 6, at the junction of the tool and the tool holder
was monitored by a portable digital thermocouple unit.

The calibration of the h.s.s.—mild steel thermocouple was made using the silver bead
technique. The tool and a long specimen of the work material were inserted in a silver bead
placed in a crucible. The temperature of the bead was varied either by heating on a burner or
by cooling from a molten state. The bead temperature was monitored by the digital
thermocouple. The thermo-e.m.f. was measured using the Electrometer. Parasitic voltages at
the junctions of the leads with the tool and the work- -specimen were avoided by directing
compressed air jets onto the junctions.

All'signals were recorded on the u.v. recorder. A similar technique was used to calibrate the
parasitic e.m.f. generated between the tool holder and the tool. In this case, the tool holder
replaced the work specimen.

RESULTS AND DISCUSSION

Figure 5 shows the calibration curve obtained for the high speed steel-mild steel
thermocouple. It can be seen that a straight line can be used as a reasonable approximation to
the curve in the temperature range 220-660°C. Below 220°C, the output is negative and too
small in magnitude to be reliable. Beyond 600°C, there is a tendency for the thermocouple to
saturate. The useful range of the thermocouple may thus be taken as 200-650°C, which is
satisfactory for the present purpose.

Figure 6 shows the calibration curve obtained for the tool holder—high speed steel
thermocouple. Since the parasitic temperatures are much lower than the cutting tempera-
tures, this curve has been obtained only up to 200°C. For a given parasitic temperature 0, the
parasitic e.m.f. e, can be read directly from this graph.

Figure 7 shows the relationship obtained relating the measured thermo-e.m.f. ¢,, between
the cutting tool and the workpiece to the parasitic temperature 6, at the middle of the contact
region between the tool and the tool holder.

The corrected temperature 6,, can now be obtained from the measured e.mf. e, by the
following procedure.

s
® — COOLING FROM MELT

© — HEATING ON BUNSEN BURNER
* — OQOOLING OF HEATED BEAD

0

25—
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e (mv ]
o
T
\:P‘\.q‘
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o

-05 . o
8 {6}

FiG. 5. High speed steel tool-mild steel thermocouple calibration curve.
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(i) read 6, on Fig. 7 for the given e,,;

(ii) read e, for the above 6, on Fig. 6;

(iii) obtain corrected e.m.f. at the tool tip e from the relationship e = e, — ¢,; and

(iv) obtain the corrected temperature 6, for the above value of e from Fig. 5.

Figures 8 and 9 show the variation of measured (and corrected) cutting temperature 6,
with cutting speed V in the low and high ranges of rake angles respectively. Curve fitting was
done by conducting curvilinear regression analysis using a polynomial function. Inclusion of
terms up to the second degree was found adequate. The errors due to regression analysis were
generally lower than the experimental errors. Each curve has been approximated by straight
lines in the low and high speed regions. The slopes of the tangent lines at representative
speeds give the magnitude of ¢ in each range and the results are tabulated in Table 2. Tt is seen
from Figs. 8 and 9 that the effect of rake angle on ¢ is considerably less than the effect due to
cutting speed. Consequently, £ can be taken as 0.15 for the high speed range and 0.38 for the
low speed range. Takayama and Murata have noted a similar fall in ¢ at high cutting speeds
while machining with carbide tools [ 7]. An analysis of the data obtained by Zorev [8] while
machining steel 20 by a 20A-0 tool also leads to a similar' conclusion. The values of &
obtained by Zorev [8] at low and high speed ranges are also practically the same as those
obtained from the present investigation.

Figures 10 and 11 show the same data arranged so as to give the relationship between
cutting temperature 8, and rake angle. There is a gradual decrease in 6, as rake angle
increases — see Fig. 4. There is however an unexpected steep fall in 6,, in the range of & = 30°.
Repeated experiments confirmed this trend. However, for the sake of simplicity, the analysis
here is limited to rake angles less than 25°. The data were subjected to the same procedure of
regression analysis as used for Figs. 8 and 9. The low rake angle range (x = — 10 to 10°) and

high rake angle range (¢ = 10—25°) have been approximated by straight lines given by
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tangents at « = 0 and 20°. The slopes of these straight lines when divided by the intercept on
0,,-axis give the values of m, (see equation 19). The results are tabulated in Table 2. The
magnitude of m; can be taken as 0.011 for the low rake range and 0.0082 for the high rake
range.

Figures 12(a) and (b) show the observed V-T relationships at different rake angles. The
results of linear regression analysis are summarised in Table 2. It is seen that Taylor’s
Equation is generally obeyed. The magnitude of index n, however, is found to be 0.21 in the
low speed range and 0.41 in the high speed range. A similar increase in n with cutting speed V

has been reported by Zorev [9] while machining with carbide tools. An explanation for this
phenomenon is now given.
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Test series
0 1.1 and 1.2 2.1 and 2.2 3.1 and 3.2
Mean & 0.38 0.15
(Figs. 8 and 9)
Mean g 159
my 0.011 0.0082
(Figs. 10 and 11)
m* 0.003 0.0055 0.002
m, =m; —m* 0.008 0.0027 —
n from Tool life curve 0.21 0.41 0.38
(Figs. 12a, b)
n from equation (23) 0.18 0.40 0.34

TARLE 2. THE EXPERIMENTALLY DETERMINED VALUES OF THE PARAMETERS &, ¢, My, My, m*
AND TWO ESTIMATES OF n
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F1G. 11. The relationship between cutting temperature 8, and rake angle at rake angles from 10° to
30°.
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30°. S

Let it be assumed that 6, is a measure of mean temperature at the chip/tool interface on the
rake face 0,. It has been noted already that ¢ is smaller at higher speeds. Consequently, and
since g'ne = 1, a decrease in ¢ should lead to an increase in nif ¢’ is constant. This is confirmed
by the fact that the product ne is about the same for both high and low speed ranges. The
index of Schallbroch—Shaumann equation ¢’ should therefore be constant for the data
obtained during the cutting test. Figure 13 shows the relationship obtained between 6,, and
T. It is seen that the entire data can be expressed by the equation T0% = const. Linear
regression analysis gives ¢ = 15.6 which agrees well with the mean magnitude of 1/ne = 15.9.
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FIG. 13. Relationship between tool life and cutting temperature 0,,.

At this stage it is possible to speculate about the magnitude of 3. Assuming that the steady
state wear curve is a straight line, (i.e. d/ /dtis independent of | 1), it follows from equation (13)
that

0 +w—1=~0. (24)

Taking ¢’ = 15.9 and the two independent values of @(0.75 and 1), it is seen that § lies in the
range 0 (for “lump” wear when » = 1) to 0.0157 (for “layer” wear when @ = 0.75). Since &
cannot be zero or negative, one may conclude again that pure “lump” wear is unlikely to
occur at the tool flank. Therefore, some component of “layer” type wear can always be
expected. The magnitude of the range of & calculated above agrees well with the estimated
value from the data on cutting temperature at different values of flank wear land obtained by
Greenhow and Rubenstein [10].

The magnitude of C is dependent on n, g and m* as per equation (23). Experimentally, the
magnitude of C can be obtained from the V-T relationships at each rake angle. Since the
magnitudes of n and g are already known it is possible, in principle, to determine m* from this
data. In fact the magnitude of m* was obtained separately for the low speed and high speed
dry cutting data by trial and error. The magnitudes of m* for the two ranges of speed were
found to be 0.003 and 0.0055 as illustrated in F ig. 14. At these values of m* the data obtained
by varying rake as well as clearance angles fall neatly on the same straight line.

At other values of m*, it is observed that two separate straight lines respectively are
obtained for « = const and § = const (e.g. see Fig. 3 where m* = 0). It may be noted that the
low speed data are usually associated with low rake angles since the tools burn out at higher
speeds. Similarly, the high speed data are associated with hi gh rakes. The magnitude of m,
can be obtained from the difference (m, — m*) which gives a value of 0.008 for the low V—low
arange and a value of 0.0027 for the high V- high « range. In both cases the magnitude of m, is
positive as assumed in the development of equation (23)

The slopes of the straight lines in Fig. 14 as obtained by regression analysis give a value of
0.184 in the low V-low o range and a value of 0.4 in the high V-high « range. These agree
reasonably well with the Taylor index n obtained for the two ranges, viz. 0.21 and 0.41
respectively.

Figure 15 shows the results of the analysis of data obtained with the application of coolant
assuming ¢’ = 15.9, m* = 0.002 in this case. The slope of the straight line obtained by
regression analysis is 0.34 in this case which agrees well with the value of n = 0.38 obtained
from the Taylor plot.
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The order of magnitude of m* associated with each type of cutting seems to be reasonable.
For instance, high speed data which are associated with the highest temperatures and
therefore with the greatest change in cutting temperature per unit change in rake angle are
associated with the highest m*. For the same reason, machining with a cutting fluid produces
the lowest value of m*.
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F1G. 14. The relationship between Taylor Constant C, and [(cot § — tana) (1 — m*x)*™] for Test
series 1.1, 1.2, 2.1 and 2.2
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The existence of identical straight lines for constant  and constant « values in Figs. 14 and
15, the observation that the slopes of these straight lines agree well with the corresponding
values of Taylor Index n and the observation that the estimated values of m, are reasonable
and always positive indicate that equation (23) is a reasonable expression of the influence of
rake and clearance angles on Taylor Constant C. To test the model further, experiments were
conducted specifically with zero rake angle tools. At « = 0, equation (23) becomes
independent of m*. Thus, the correlation of equation (23) should be obtained without a need
to fit the value of m* with the results. Figure 16 shows the experimental results with « = 0 at
different clearance angles. It is seen that the slope of the graph agrees with n.

Further work, however, will be necessary to estimate rigorously the magnitudes of m, in
different conditions by solving the problem of conduction heat transfer from the tool rake to
the tool flank.

CONCLUSIONS

1. The high speed steel-mild steel tool-work thermocouple method is useful in the range of
cutting temperatures from 220 to 650°C. The typical calibration curve is as in Fig. 6.
2. Flank wear of cutting tools occurs as a result of a combination of “lump” and “layer” types
of wear.
3. In orthogonal cutting of mild steel by high speed steel
(a) Taylor exponent n increases from 0.1 to 0.2 at low speeds to 0.41 at high speeds mainly
because of the decrease in exponent ¢ of cutting speed V in the relationship 6, = Const V*.
Rake and clearance angles have relatively little effect on the magnitudes of ¢ and n.
(b) Schallbroch—Schaumann exponent ¢ in the relationship T#% = Const remains a
constant irrespective of variations in rake angle, clearance and cutting speed within the
practical range. i
(c) Equation (22)is a reasonable expression of the influence of rake and clearance angles
on the Taylor Constant. The expression is based on linear approximations of the influence
of rake angle on mean chip/tool contact temperature 6, and on the conduction heat
transfer from the rake surface to the flank surface. m, and m, are the corresponding linear
coefficients.
(d) The influence of m; and m, may be combined and expressed by a single coefficient m*
(=m; — m,) as in equation (23). The magnitude of m* is about 0.01 in the low speed—low
rake range (dry cutting) ; about 0.003 in the high speed—high rake range (dry cutting); and
0.002 when Dromnus B cutting oil in water is used as the cutting fluid. Clearance angle has
little influence on the magnitude of m*.
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