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1. Introduction 
 STC Cutting of CIRP had set up a 
Working Group on „Modeling of Machining 
Operations‟ in August 1995. The scope of the 
Group was restricted to operations with defined 
cutting edges [1]. In January 1996 (at it‟s Paris 
meeting), the Group reached the conclusion 
that, despite extensive  developments that 
have taken place over the last 50 years, there 
is a serious dearth of models for machining 
operations which are accurate and general 
enough to be used in industry.  In particular 
several members, including the present author, 
suggested that the Group may wish to decide 
“whether we need to give a nudge or push in a 
specific direction to suit our engineering 
purposes as we perceive them in the short as 
well as the long term” [2]. There was 
substantial support to the suggestion at the 
meeting.  However, so far, the nature of the 
specific „nudge(s)‟ needed have remained 
undefined.   
 This paper describes and argues for 
some specific „nudges‟ which the author 
believes would be particularly useful at this 
point in the history of machining research. 
Several of the ideas contained in this paper are 
not new. Bits and pieces of the ideas can be 
found in recent machining literature.  However, 
these bits are yet to be integrated into a unified 
and collectively agreed strategy. 
 This paper does not intend to be a 
definitive paper. It merely aims to stimulate 
discussion in a specific direction. Hence, an 
intuitive approach will be used in developing 
the ideas.  
 The following sections follow up on the 
propositions included in [2] and are mainly 
inspired by the author‟s observations during 
the development of a literature database for 
the Working Group [3]. 
 

2.  Process Inputs and Outputs 
A process [P] responds to a given set of 

inputs by producing a set of outputs. 

 [P]
{In} {Op}

{In} = Nominal Input
{Iv} = Unanticipated Input Variations

 P = The Process
{Op} = Perfromance Measure (Output)

{Os} = Output capabele of being sensed

{Iv} {Os}

 
Fig. 1 

 

 Process inputs can be classified into two 
types: The nominal inputs, {In}, and the 
unexpected input variations, {Iv}.  
 The nominal input array, {In}, consists of 
nominal values of the inputs deliberately set by 
the process designer or operator. The typical 
contents of {In} are nominal tool and work 
material properties; tool geometry variables: 
e.g. rake angle, clearance angle, and cutting 
edge obliquity; and cutting conditions: e.g. 
cutting speed, feed, depth of cut, and dry or 
wet. 
 In practice, many unexpected variations, 
disturbances or perturbances occur in the 
inputs conditions. For instance, the process 
planner might be expecting a tempered 
structure in the steel being machined. 
However, it is quite possible that a particular 
batch of workpieces might unexpectedly have 
a martensitic structure. Such variations can not 
often be anticipated and lead to unexpected 
variations in the outputs. {Iv} refers to this array 
of unexpected input variations. 

Amongst the many outputs from a 
process, we are particularly interested in two 
subsets. The first is a set of performance 
measures (e.g. cutting forces, cutting 
temperatures, tool life) which we need for the 
purpose of process design, tool design, 
process control, etc. A partial list of 
performance measure outputs, {Op}, is given in 
[2]. On other occasions, we need to measure 
(or sense) another subset, called the sensing 
subset {Os}, for monitoring and control 
purposes. Acoustic emission, force 
components, power, acceleration, vibrations, 
noise, tool-work thermocouple temperature, 
and flank wear are amongst the outputs that 
have been sensed for monitoring purposes.  In 
principle, there could be elements common to 
{Op} and {Os}. However, in practice, it has not 
been possible to sense many of the elements 
of {Op}.   
 

3. The Current Status of Modeling of 

Machining Operations 
A process [P] produces outputs {Op} as 

well as {Os} as a result of a series of 
phenomena natural to the process under the 
given conditions. A modeller speculates  on 
these phenomena in terms of a network of 
cause-effect relationships and attempts to 
capture the more important relationships in a 
model [Mp] which aims at quantitatively 
predicting {Op} for a given input array {In}: 
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 [Mp]
{In} {Op}

Mp = The process model aimed
at predicting {Op} from given

nominal inputs {In}  
Fig. 2 

 
The more detailed is the capture of the 

relationships, finer is the „degree of brush‟ of 
the model.  The greater is the range of cutting 
situations in which the model is effective, 
greater is the „generality‟ of the model. The 
greater is the correlation of the predicted 
outputs with actual output magnitudes, greater 
is the „accuracy‟ of the model. 
  The major aim of the Working Group is to 
promote a quicker development of models 
which can quantitatively predict the array of 
performance measures {Op}. 
 The author was recently surprised read 
the following sentences in a news brief 
included in the „Manufacturing Engineering‟ 
journal published by SME: “A metal cutting FE 
modeling software called Mach2D to be 
released by Third Wave to be realized in 1997. 
Capable of modeling forces, temperatures, 
material removal rate, chip growth, chip 
breaking, chatter, and vibration.” [4]. 
 There are substantial similarities between 
the capabilities the Working Group hopes to 
impart to machining models and the 
capabilities of Mach2D as described above. 
 But why was the author surprised to read 
the news brief? The answers lies in the 
following quotes from [3]: 

 “[T]he progress of machining science has 
not been dramatic despite its history of over 50 
years and the efforts put in by a large number 
of scientists. Notwithstanding the availability of 
powerful computers which can be used to 
analyze more complex operations, significant 
interest  still persists in the relatively simpler 
case of single edge orthogonal cutting. It might 
be that many theoretical concepts can be 
tested more easily for orthogonal cutting.  
However, as long as the modellers do not 
progress well beyond single edge orthogonal 
cutting, they would have little impact on 
industrial practice.” 

 “[V]ery little work has been done in 
studying (leave alone modeling) machining 
with non-plane rake faces although the vast 
majority of modern tools have complex rake 
faces. This is another reason why modeling 
has not moved out of the laboratory (or the 
computer room in these days) and on to the 
shop floor.” 

 “[A]nalytical modeling continues to 
dominate the modeling scene. However, there 
is growing interest in Finite Element Modeling 
in recent years. That is good news.  The bad 
news is that, except in the rare cases when the 
models are supported by custom-built 

machining databases, these models can still 
only predict qualitative trends. Their 
performance with regard to quantitative 

prediction continues to be questionable  
another reason for the lack of impact on 
industry.” 

 “There is indeed a wealth of knowledge 
concerning machining. It is generally agreed 
that this knowledge is quite useful for process 
designers. The models so far created have 
been quite successful in terms of qualitative 
predictions. However, it is a different story 
when it comes to quantitative prediction.  No 
wonder then that there have been very few 
automated industrial machining systems where 
a modeling package is a regular and critical 
component of the system control software.” 
 Mach2D, whatever its virtues, is unlikely 
to be more than a computer-aided tool for 
exploring machining process trends. It would 
be surprising if it were to be able to make 
quantitative predictions at the accuracy levels 
acceptable to industry for a wide range of 
machining operations.  And, it is only a 2D 
model whereas most machining operations 
(and the phenomena associated with them) are 
3D in nature. 
 As noted in [3], the majority of current 
machining process models ([Mp]} are either 
analytical or computational (mainly FEM 
based).   
 Analytical models have only been partly 
successful. They have created a deep 
understanding of machining processes which 
is often valuable to the process designer.  
Some models have demonstrated the ability to 
quantitatively predict some of the performance 

measures  especially the mean magnitudes 
of cutting force components, cutting power and 
temperatures. However, the following problems 
persist: 

 Only very few practical operations have 
been modeled to the required generality. 

 Many performance measures cannot still 
be quantitatively predicted. 

 They are reliable only when type II chips 
are ensured. If a built-up edge exists, the chips 
are discontinuous or serrated, and so on,  
success is questionable.  And, such chip forms 
occur often and cannot be anticipated. 

 They invariably require massive machining 
databases, MDB (consisting of data on the 
work material flow stress magnitudes,  shear 
angles, chip flow angles, mechanical and 
thermal properties of the tool material, etc.), to 
guide the selection of the magnitudes of an 
array of model coefficients {C}.  The creation of 
machining databases requires extensive off-
line experimentation, Xoff, and is therefore 
expensive.   
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 [Mp]{In} {Op}

Xoff: Off-line Experiments

{C} = Model Coefficients

MDB

Machining

Database

 
 Fig. 3 

 
With regard to the MDB, two approaches 

are in vogue.  
The first attempts to obtain the properties 

of work materials from fundamental (or, more 
appropriately, non-machining) tests. The 
problem is that these tests need to be carried 
out at conditions simulating the large strains, 
strain rates, and temperatures prevailing in 
machining. Only limited success has been 
achieved in this regard so far. Further, the 
tests that are available are very expensive to 
conduct.  

The second approach (pursued by 
Armarego, Venuvinod, etc.) utilizes machining 
(in particular, single edge orthogonal/oblique  
cutting) itself as the material test [2]. Methods 
are then found to extrapolate these data to 
more complex cutting situations. 
 The current status with regard to 
computational modeling is similar to the above 
except that there are additional uncertainties 
and problems with regard to the criteria that 
are to be used in relation to chip-work material 
separation, transition from transient to steady 
state cutting, etc.  

Finally all modeling approaches have to 
face the reality that chip formation in machining 
is, in general, not uniquely defined.  Minute 
perturbations in the input conditions (i.e. the 
presence of {Iv}), can lead to substantial 
changes in the process state.  Consequently, 
model coefficients derived from one set of off-
line experiments cannot be transported 
confidently to other instances of the same 
process.  

It is clear from the above discussion that 
we need to explore other ways to obtain the 
magnitudes of the model coefficients ({C}). 
  

4. Sensing 
 Sensing involves the measurement and 
monitoring of the desired subset {Os} of the 
process output and processing the signals 
collected through a signal processing algorithm 
or system  to yield an array of sensed features 
{S}: 

[P]
{In}

{Os}

Sen.

Sensing

{S}

 
Fig. 4 

 
 The following was noted in [3]:”[T]here is 
significant interest in sensing and  monitoring. 
A more detailed study of the [literature] 
database has shown that much of this interest 
has appeared since the mid eighties and that 
the sensing techniques have generally been 
augmented by Artificial Neural Nets and such 
AI-based techniques. On occasion, there has 
been a model-based processing of sensory 
data.” Further, “[A]coustic emission has 
emerged as the predominant sensing 
technique in on-line process monitoring.” 
 

4. Augmenting the Prediction Ability of 

Modeling Through Sensing 
 We have noted that a major problem with 
the traditional approach to modeling is the 
need to calibrate the model coefficients 
through a machining database MDB. The 
traditional approach to compiling a machining 
database has been through extensive off-line 
experimentation. As we have noted, a reliance 
on such static databases leads to the inability 
of the model to perform effectively when there 
are minor perturbations in input conditions. 
These perturbations (inherent variability) 
cannot generally be anticipated and, owing to 
the inherently non-unique nature of the chip 
formation process, leads to large prediction 
errors.  
 In contrast, modern sensing technologies 
enable us to perform on-line or real-time 
measurement of outputs. Sensing and sensor 
fusion technologies are getting better every 
day. Is it time now to abandon the concept 
static databases in favor of dynamic 
databases, i.e. in favor of data obtained in real-
time through sensing? Such real-time data are 
likely to be superior to static databases since 
they have been collected while the same 
perturbations exist in the input conditions.  
 However, there is one problem to 
address.  Model [Mp] has been created to 
predict {Op}. But the sensors measure {Os} and   
may or may not be able to measure {Op} (in 
most cases, they do not). How can we solve 
this problem? 
 The answer probably lies in the  
realization that both  {Op} and {Os} are outputs   
from the very same process [P] as the latter 
manifests in real time.  Hence, {Os} should 
contain much information concerning the way 
[P] behaves for the nominal input {In}. All we 
need to do is find a way of utilizing this insight 
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towards  determining the corrections {C} that 
need to be made to the model coefficients {Ci} 
set initially through static machining databases 
(static):  

[Mp]

P

{In} {Op}

{C}

Sen. ?

{C}{Ci}
+ -

{Os} {S}
 

Calibrating A Predictive Model by Using 
Sensed Output 

Fig. 5 
  

The author has attempted a variation of 
the above approach with some success in 
compensating for workpiece dimensional 
errors in turning. More about this will be 
presented in section 10. 
  

5. Learning 
 Learning is usually based on pattern 
recognition and clustering techniques such as 
Artificial Neural Nets (ANN). More recently, 
there have been applications of Chaos and 
Fractal theories and Wavelet theories towards 
learning.   
 An ANN can be supervised or un-
supervised. Amongst the various types of 
supervised ANN, the Back Propagation Net 
(BPN) has become particularly popular:  
 A supervised ANN operates in two 
modes: Training Mode, and Test or Utilization 
Mode.   
 In the training mode a set of data/signals  
({Il} are input to the learning network. In 
addition, the network‟s connection weights  [W] 
are adjusted to an initial set. Off-line or on-line 
experiments are conducted with the given 
process using a training set of {Il} arrays. The 
sensed outputs {Os} are used as training data 

to yield a set of corrections [W] for [W]. The 
cycles are  repeated until the network outputs 
signals which agree with the experimental 
outputs  within   an   acceptable   error  margin.  
[W ]is then frozen so that the network becomes 
the trained network. The network can then be 
used to „predict‟ the outputs for new instances 
of {Il}.  

{Il} LN {Op}

{W}
 

{Il}: Inputs to the learning system 
[W] : Matrix of Connection Weights 

LN : Learning Network 
Prediction by Using a  

Learning System 
Fig. 6 

 
6. Augmenting Learning Through 

Reinforcing Interactions with Modeling  
 The performance of learning systems has 
been variable. Intuitively speaking, a learning 
system should be able to predict effectively if it 
is able to capture the essence of the process. 
It follows then that if the process is more 
complex (i.e. it has more uncertainty, more 
non-uniqueness, has a larger network of 
cause-effect-relationships, etc.) then one 
would require a more complex learning system. 
 What factors could influence prediction 
effectiveness of a learning system. To the 
author‟s knowledge no rigorous answer is 
available today to this question. Hence we will 
resort to the intuitive proposition that the 
learning effectiveness of a learning systems 
(such as BPN) can be increased by: 
1. adopting a more complex network 
architecture (this is likely to increase the cost 
and processing time, hence we will leave it out 
of the present discussion); 
2. increasing the number of training cycles 
(this also will increase the time required for 
training and, as encountered often in practice, 
there might be saturation effects; hence we will 
leave this alternative alone.); and 
3. increasing the size of the input array {Il}. 
 Let us focus on the last approach. How 
can we increase the size of the input array {Il}?  
We have already used up all the known inputs. 
Hence we need to look elsewhere. How about 
{Os}? The present ethos of modeling assumes 
that it can down without a knowledge of  {Os} in 
the prediction of {Op}. And, as noted earlier, 
this has only been partially successful. 
However, we have already noted that {Os} does 
contain some insight into [P]. If so, why not 
include {Os} as one of the inputs to the learning 
system?: 

P Sen.

{In}

{S}
LN {Op}

[W]

{Os}

 
Augmenting a Learning System Through {Os} 

Fig. 7 
 

 The above strategy might look similar to 
many recent works where a combination of 
sensing and learning has been used.  
However, in these works, the output to be 
sensed was both {Os} and {Op}, i.e. one or 



 5 

more of the performance measures were 
sensed.  This has led to a flurry of actions to 
discover or invent methods for directly sensing 
each performance measure.  The problem with 
this approach has been an unnecessary 
increase in the number of sensors and 
complexity of the system. In contrast, in Fig. 7, 
there need be no overlap between {Os} and 
{Op}.  One may use only those sensors which 
are convenient and are known to be able to 
reasonably capture the essence of the process 
and learn to predict any performance measure. 
 

7.  Augmenting Learning Through Modeling   
 Another approach (which is probably 
more in line with the agenda of this Working 
Group) is to increase the size of the input array 
of the learning system by supplementing with 
the model 
predictions:

LN
[Mp] {Op}pr

{In}

{Op}

[W]
Simple
MDB

 
Augmenting Learning with Modeling 

Fig. 8 
 

 The predictions, {Op}pr, from the model 
contain much insight into the behavior of the 
process by virtue of the accumulated 
knowledge on machining the model 
incorporates and the empirical information 
contained in its MDB.  However, unlike in 
conventional modeling, the model [Mp] is not 
expected to perform accurate quantitative 
prediction.  It is left to do what it does best, i.e. 
anticipate the qualitative trends of {Op}.  
Augmented with this additional insight, 
hopefully, the learning system will perform 
faster and better. The MDB supporting the 
model, in contrast to the current practice, need 
not be elaborate and highly accurate. The 
learning system will eventually learn to correct 
the errors arising from the MDB.  
 

8.  Throwing Everything Together 

P Sen.

LN

[Mp]

{In} {Op}

[W]Simple MDB

{Op}pr

{S}
{Os}

 
Augmenting Learning Through  

Modeling as well as Sensing 
Fig. 9 

 
9.  The Problem 
  Figures 5, 7, 8, and 9 have outlined 4 
approaches towards obtaining synergy 
amongst modeling, sensing and learning. All 
the approaches have aimed  at predicting {Op}. 
With well researched implementation, they are 
likely to be effective when (I) the sensing 
system measures the desired {Op}, and/or (ii) 
the   learning  system  is  trained  to  learn {Op}. 
However, what should one do when, as is often 
the case, one does not have sensors to 
measure {Op}, or when no reliable off-line data 
exists to lean {Op}? 
 To illustrate the above problem consider  
the case of sensing using acoustic emission 
(AE) signals which has become particularly 
popular in recent years. Many ANN based 
learning systems have been developed in 
association with AE. But, note that AE is not a 
performance measure. It is merely a 
conveniently sensed signal. How can the 
measured AE signals aid the process of 
predicting {Op}? Clearly, much further research 
is required to answer this question 
satisfactorily. 
 Consider now the specific case of 
predicting cutting forces when AE constitutes 
the {Os}.  Dornfeld and others have suggested 
that the „True Mean Square (TMS)‟ value of the 
AE signal is proportional to the work rates in 
cutting Likewise, ? have demonstrated from 
end milling investigations that there is a strong 
correlation between TMS and the measured 
cutting force components [6].  Thus it should 
be possible to gain much insight into the real-
time process phenomena that influence cutting 
force magnitudes through real-time sensing of 
AE. Further, a learning system based on data 
obtained through [Mp] may not need to have a 
very comprehensive MDB when the learning is 
augmented by AE. This is because the 
information obtained from the AE signals could 
be used to (somehow) calibrate the model or 
compensate for the errors in the model. 
 The above discussion suggests that it 
would be useful to direct a part of future 
analytical or computational modeling efforts 
towards developing an ability to predict {Os} 
(instead of merely predicting {Op}):   

 [Ms]
{In} {Os}

[Ms] = The process model aimed at

predicting {Os}  unlike [Mp] which

predicts {Op}
 

A Possible Nudge 
Fig. 10  

10.  A Case Study 
 Several projects have recently been 
initiated at the author‟s laboratories to 
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implement and test some of the approaches 
described above. The following provides a 
description of the progress made on one of the 
more promising projects.   
 The aim of the project (see Fig. 11) is to 
enhance an existing turning center so that it 
acquires the ability to (i) autonomously perform 
on-machine inspection of the parts machined, 
(ii) continuously learn from the dimensional 
errors it has discovered, (iii) anticipate the 
dimensional errors expected on the next part 
from the uncompensated part program, and 
(iv) compensate the part program 
appropriately. 

The system attempts to compensate for 
machine tool errors (kinematic, positioning, 
etc.); thermal deformation errors; and the 
elastic deflections of the machine tool, 
workpiece, and cutting tool under the cutting 
load.  

Preliminary laser measurements are used 
to determine the distribution of the machine 
tool errors and thermal deformation errors (as 
functions of cutting time). A BPN may be 
trained to learn the information thus obtained. 
Next, simple analytical models are developed 
for the compliances of the machine tool and 
the workpiece. Only semi-empirical models 
(after M. Kronenberg) have so far been 
adopted while modeling the radial component 
of the cutting force. The models when put 
together may contain over ten unknown model 
coefficients which change from one cutting 
situation to another.  

On-machine inspection is performed by 
using the „Fine Touch‟ principle [7]. “Fine 
Touch‟ enables the use of the cutting tool itself 
as the contact probe by sensing changes in the 
signal from an electromagnetic coil placed 
around the tool (or the workpiece). The method 
is capable of detecting contact within a 

positional accuracy of 1 m.   
The major problem that arises is 

regarding the unknown coefficients of the force 
and compliance models which need to be 
calibrated for each new cutting scenario. To 
solve this problem, initial values for the 
compliance model coefficients are determined 
from the preliminary experiments and, for the 
cutting force model, from a simple static MDB. 
It is left to the neural network to integrate all 
the information.  

The system has been implemented in 
mostly in the manual mode, i.e. the functions of 
many of the modules and the interfacing 
between the modules has been implemented 

manually. The results have shown that the 
dimensional errors, which are of the order of 

80 m for the uncompensated part programs, 

can be decreased to around 5 m.  This is an 
encouraging result since the random error itself 

of the machine tool is of the order of 3 m. 
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