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1. Introduction

STC Cutting of CIRP had set up a
Working Group on ‘Modeling of Machining
Operations’ in August 1995. The scope of the
Group was restricted to operations with defined
cutting edges [1]. In January 1996 (at it's Paris
meeting), the Group reached the conclusion
that, despite extensive developments that
have taken place over the last 50 years, there
is a serious dearth of models for machining
operations which are accurate and general
enough to be used in industry. In particular
several members, including the present author,
suggested that the Group may wish to decide
“whether we need to give a nudge or push in a
specific direction to suit our engineering
purposes as we perceive them in the short as
well as the long term” [2]. There was
substantial support to the suggestion at the
meeting. However, so far, the nature of the
specific ‘nudge(s)’ needed have remained
undefined.

This paper describes and argues for
some specific ‘nudges’ which the author
believes would be particularly useful at this
point in the history of machining research.
Several of the ideas contained in this paper are
not new. Bits and pieces of the ideas can be
found in recent machining literature. However,
these bits are yet to be integrated into a unified
and collectively agreed strategy.

This paper does not intend to be a
definitive paper. It merely aims to stimulate
discussion in a specific direction. Hence, an
intuitive approach will be used in developing
the ideas.

The following sections follow up on the
propositions included in [2] and are mainly
inspired by the author's observations during
the development of a literature database for
the Working Group [3].

2. Process Inputs and Outputs
A process [P] responds to a given set of
inputs by producing a set of outputs.

{In} [p] {Op}
{Iv} {Os}

{Iln} = Nominal Input
{l} = Unanticipated Input Variations
P =The Process
{Op} = Perfromance Measure (Output)
{Os} = Output capabele of being sensed

Fig. 1

Process inputs can be classified into two
types: The nominal inputs, {l.}, and the
unexpected input variations, {I.}.

The nominal input array, {I.}, consists of
nominal values of the inputs deliberately set by
the process designer or operator. The typical
contents of {l,} are nominal tool and work
material properties; tool geometry variables:
e.g. rake angle, clearance angle, and cutting
edge obliquity; and cutting conditions: e.g.
cutting speed, feed, depth of cut, and dry or
wet.

In practice, many unexpected variations,
disturbances or perturbances occur in the
inputs conditions. For instance, the process
planner might be expecting a tempered
structure in the steel being machined.
However, it is quite possible that a particular
batch of workpieces might unexpectedly have
a martensitic structure. Such variations can not
often be anticipated and lead to unexpected
variations in the outputs. {l\} refers to this array
of unexpected input variations.

Amongst the many outputs from a
process, we are particularly interested in two
subsets. The first is a set of performance
measures (e.g. cutting forces, cutting
temperatures, tool life) which we need for the
purpose of process design, tool design,
process control, etc. A partial list of
performance measure outputs, {Op}, is given in
[2]. On other occasions, we need to measure
(or sense) another subset, called the sensing
subset {Os}, for monitoring and control
purposes. Acoustic emission, force
components, power, acceleration, vibrations,
noise, tool-work thermocouple temperature,
and flank wear are amongst the outputs that
have been sensed for monitoring purposes. In
principle, there could be elements common to
{Op} and {Os}. However, in practice, it has not
been possible to sense many of the elements
of {Og}.

3. The Current Status of Modeling of
Machining Operations

A process [P] produces outputs {O,} as
well as {Os} as a result of a series of
phenomena natural to the process under the
given conditions. A modeller speculates on
these phenomena in terms of a network of
cause-effect relationships and attempts to
capture the more important relationships in a
model [Mp] which aims at quantitatively
predicting {Op} for a given input array {lI.}:
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M, = The process model aimed
at predicting {O} from given
nominal inputs {I.}

Fig. 2

The more detailed is the capture of the
relationships, finer is the ‘degree of brush’ of
the model. The greater is the range of cutting
situations in which the model is effective,
greater is the ‘generality’ of the model. The
greater is the correlation of the predicted
outputs with actual output magnitudes, greater
is the ‘accuracy’ of the model.

The major aim of the Working Group is to
promote a quicker development of models
which can quantitatively predict the array of
performance measures {Op}.

The author was recently surprised read
the following sentences in a news brief
included in the ‘Manufacturing Engineering’
journal published by SME: “A metal cutting FE
modeling software called Mach2D to be
released by Third Wave to be realized in 1997.
Capable of modeling forces, temperatures,
material removal rate, chip growth, chip
breaking, chatter, and vibration.” [4].

There are substantial similarities between
the capabilities the Working Group hopes to
impart to machining models and the
capabilities of Mach2D as described above.

But why was the author surprised to read
the news brief? The answers lies in the
following quotes from [3]:

e “[T]he progress of machining science has
not been dramatic despite its history of over 50
years and the efforts put in by a large number
of scientists. Notwithstanding the availability of
powerful computers which can be used to
analyze more complex operations, significant
interest still persists in the relatively simpler
case of single edge orthogonal cutting. It might
be that many theoretical concepts can be
tested more easily for orthogonal -cutting.
However, as long as the modellers do not
progress well beyond single edge orthogonal
cutting, they would have little impact on
industrial practice.”

o “[Vlery little work has been done in
studying (leave alone modeling) machining
with non-plane rake faces although the vast
majority of modern tools have complex rake
faces. This is another reason why modeling
has not moved out of the laboratory (or the
computer room in these days) and on to the
shop floor.”

e “[Alnalytical modeling continues to
dominate the modeling scene. However, there
is growing interest in Finite Element Modeling
in recent years. That is good news. The bad
news is that, except in the rare cases when the
models are supported by custom-built

machining databases, these models can still
only predict qualitative trends. Their
performance with regard to quantitative
prediction continues to be questionable —
another reason for the lack of impact on
industry.”

e “There is indeed a wealth of knowledge
concerning machining. It is generally agreed
that this knowledge is quite useful for process
designers. The models so far created have
been quite successful in terms of qualitative
predictions. However, it is a different story
when it comes to quantitative prediction. No
wonder then that there have been very few
automated industrial machining systems where
a modeling package is a regular and critical
component of the system control software.”

Mach2D, whatever its virtues, is unlikely
to be more than a computer-aided tool for
exploring machining process trends. It would
be surprising if it were to be able to make
quantitative predictions at the accuracy levels
acceptable to industry for a wide range of
machining operations. And, it is only a 2D
model whereas most machining operations
(and the phenomena associated with them) are
3D in nature.

As noted in [3], the majority of current
machining process models ([Mp]} are either
analytical or computational (mainly FEM
based).

Analytical models have only been partly
successful. They have created a deep
understanding of machining processes which
is often valuable to the process designer.
Some models have demonstrated the ability to
quantitatively predict some of the performance
measures — especially the mean magnitudes
of cutting force components, cutting power and
temperatures. However, the following problems
persist:

e Only very few practical operations have
been modeled to the required generality.

e Many performance measures cannot still
be quantitatively predicted.

e They are reliable only when type Il chips
are ensured. If a built-up edge exists, the chips
are discontinuous or serrated, and so on,
success is questionable. And, such chip forms
occur often and cannot be anticipated.

e They invariably require massive machining
databases, MDB (consisting of data on the
work material flow stress magnitudes, shear
angles, chip flow angles, mechanical and
thermal properties of the tool material, etc.), to
guide the selection of the magnitudes of an
array of model coefficients {C}. The creation of
machining databases requires extensive off-
line experimentation, Xox, and is therefore
expensive.
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With regard to the MDB, two approaches
are in vogue.

The first attempts to obtain the properties
of work materials from fundamental (or, more
appropriately, non-machining) tests. The
problem is that these tests need to be carried
out at conditions simulating the large strains,
strain rates, and temperatures prevailing in
machining. Only limited success has been
achieved in this regard so far. Further, the
tests that are available are very expensive to
conduct.

The second approach (pursued by
Armarego, Venuvinod, etc.) utilizes machining
(in particular, single edge orthogonal/oblique
cutting) itself as the material test [2]. Methods
are then found to extrapolate these data to
more complex cutting situations.

The current status with regard to
computational modeling is similar to the above
except that there are additional uncertainties
and problems with regard to the criteria that
are to be used in relation to chip-work material
separation, transition from transient to steady
state cutting, etc.

Finally all modeling approaches have to
face the reality that chip formation in machining
is, in general, not uniquely defined. Minute
perturbations in the input conditions (i.e. the
presence of {l\}), can lead to substantial
changes in the process state. Consequently,
model coefficients derived from one set of off-
line experiments cannot be transported
confidently to other instances of the same
process.

It is clear from the above discussion that
we need to explore other ways to obtain the
magnitudes of the model coefficients ({C}).

4. Sensing

Sensing involves the measurement and
monitoring of the desired subset {Os} of the
process output and processing the signals
collected through a signal processing algorithm
or system to yield an array of sensed features
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The following was noted in [3]:"[T]here is
significant interest in sensing and monitoring.
A more detailed study of the [literature]
database has shown that much of this interest
has appeared since the mid eighties and that
the sensing techniques have generally been
augmented by Atrtificial Neural Nets and such
Al-based techniques. On occasion, there has
been a model-based processing of sensory
data.” Further, “[A]coustic emission has
emerged as the predominant sensing
technique in on-line process monitoring.”

4. Augmenting the Prediction Ability of
Modeling Through Sensing

We have noted that a major problem with
the traditional approach to modeling is the
need to calibrate the model coefficients
through a machining database MDB. The
traditional approach to compiling a machining
database has been through extensive off-line
experimentation. As we have noted, a reliance
on such static databases leads to the inability
of the model to perform effectively when there
are minor perturbations in input conditions.
These perturbations (inherent variability)
cannot generally be anticipated and, owing to
the inherently non-unique nature of the chip
formation process, leads to large prediction
errors.

In contrast, modern sensing technologies
enable us to perform on-line or real-time
measurement of outputs. Sensing and sensor
fusion technologies are getting better every
day. Is it time now to abandon the concept
static databases in favor of dynamic
databases, i.e. in favor of data obtained in real-
time through sensing? Such real-time data are
likely to be superior to static databases since
they have been collected while the same
perturbations exist in the input conditions.

However, there is one problem to
address. Model [My] has been created to
predict {O,}. But the sensors measure {Os} and
may or may not be able to measure {Op} (in
most cases, they do not). How can we solve
this problem?

The answer probably lies in the
realization that both {Op} and {Os} are outputs
from the very same process [P] as the latter
manifests in real time. Hence, {Os} should
contain much information concerning the way
[P] behaves for the nominal input {I.}. All we
need to do is find a way of utilizing this insight



towards determining the corrections {AC} that
need to be made to the model coefficients {C;}
set initially through static machining databases
(static):
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The author has attempted a variation of
the above approach with some success in
compensating for workpiece dimensional
errors in turning. More about this will be
presented in section 10.

5. Learning

Learning is usually based on pattern
recognition and clustering techniques such as
Artificial Neural Nets (ANN). More recently,
there have been applications of Chaos and
Fractal theories and Wavelet theories towards
learning.

An ANN can be supervised or un-
supervised. Amongst the various types of
supervised ANN, the Back Propagation Net
(BPN) has become particularly popular:

A supervised ANN operates in two
modes: Training Mode, and Test or Utilization
Mode.

In the training mode a set of data/signals
({l} are input to the learning network. In
addition, the network’s connection weights [W]
are adjusted to an initial set. Off-line or on-line
experiments are conducted with the given
process using a training set of {I}} arrays. The
sensed outputs {Os} are used as training data
to yield a set of corrections [AW] for [W]. The
cycles are repeated until the network outputs
signals which agree with the experimental
outputs within an acceptable error margin.
[W Jis then frozen so that the network becomes
the trained network. The network can then be
used to ‘predict’ the outputs for new instances
of {I}}.
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LN : Learning Network
Prediction by Using a
Learning System
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6. Augmenting Learning Through
Reinforcing Interactions with Modeling

The performance of learning systems has
been variable. Intuitively speaking, a learning
system should be able to predict effectively if it
is able to capture the essence of the process.
It follows then that if the process is more
complex (i.e. it has more uncertainty, more
non-uniqueness, has a larger network of
cause-effect-relationships, etc.) then one
would require a more complex learning system.

What factors could influence prediction
effectiveness of a learning system. To the
author's knowledge no rigorous answer is
available today to this question. Hence we will
resort to the intuitive proposition that the
learning effectiveness of a learning systems
(such as BPN) can be increased by:
1. adopting a more complex network
architecture (this is likely to increase the cost
and processing time, hence we will leave it out
of the present discussion);
2. increasing the number of training cycles
(this also will increase the time required for
training and, as encountered often in practice,
there might be saturation effects; hence we will
leave this alternative alone.); and
3. increasing the size of the input array {l;}.

Let us focus on the last approach. How
can we increase the size of the input array {I;}?
We have already used up all the known inputs.
Hence we need to look elsewhere. How about
{Os}? The present ethos of modeling assumes
that it can down without a knowledge of {Os} in
the prediction of {O,}. And, as noted earlier,
this has only been partially successful.
However, we have already noted that {Os} does
contain some insight into [P]. If so, why not
include {Os} as one of the inputs to the learning
system?:
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Augmenting a Learning System Through {Os}
Fig. 7

The above strategy might look similar to
many recent works where a combination of
sensing and learning has been used.
However, in these works, the output to be
sensed was both {Os} and {Op}, i.e. one or



more of the performance measures were
sensed. This has led to a flurry of actions to
discover or invent methods for directly sensing
each performance measure. The problem with
this approach has been an unnecessary
increase in the number of sensors and
complexity of the system. In contrast, in Fig. 7,
there need be no overlap between {Os} and
{Op}. One may use only those sensors which
are convenient and are known to be able to
reasonably capture the essence of the process
and learn to predict any performance measure.

7. Augmenting Learning Through Modeling

Another approach (which is probably
more in line with the agenda of this Working
Group) is to increase the size of the input array
of the learning system by supplementing with
the model
predictions:
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Augmenting Learning with Modeling
Fig. 8

The predictions, {Op}pr, from the model
contain much insight into the behavior of the
process by virtue of the accumulated
knowledge on machining the model
incorporates and the empirical information
contained in its MDB. However, unlike in
conventional modeling, the model [Mp] is not
expected to perform accurate quantitative
prediction. It is left to do what it does best, i.e.
anticipate the qualitative trends of {Op}.
Augmented with this additional insight,
hopefully, the learning system will perform
faster and better. The MDB supporting the
model, in contrast to the current practice, need
not be elaborate and highly accurate. The
learning system will eventually learn to correct
the errors arising from the MDB.

8. Throwing Everything Together
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9. The Problem

Figures 5, 7, 8, and 9 have outlined 4
approaches towards obtaining synergy
amongst modeling, sensing and learning. All
the approaches have aimed at predicting {Op}.
With well researched implementation, they are
likely to be effective when (l) the sensing
system measures the desired {Op}, and/or (ii)
the learning system is trained to learn {Og}.
However, what should one do when, as is often
the case, one does not have sensors to
measure {Op}, or when no reliable off-line data
exists to lean {Op}?

To illustrate the above problem consider
the case of sensing using acoustic emission
(AE) signals which has become particularly
popular in recent years. Many ANN based
learning systems have been developed in
association with AE. But, note that AE is not a
performance measure. It is merely a
conveniently sensed signal. How can the
measured AE signals aid the process of
predicting {Op}? Clearly, much further research
is required to answer this question
satisfactorily.

Consider now the specific case of
predicting cutting forces when AE constitutes
the {Os}. Dornfeld and others have suggested
that the ‘True Mean Square (TMS)’ value of the
AE signal is proportional to the work rates in
cutting Likewise, ? have demonstrated from
end milling investigations that there is a strong
correlation between TMS and the measured
cutting force components [6]. Thus it should
be possible to gain much insight into the real-
time process phenomena that influence cutting
force magnitudes through real-time sensing of
AE. Further, a learning system based on data
obtained through [M,] may not need to have a
very comprehensive MDB when the learning is
augmented by AE. This is because the
information obtained from the AE signals could
be used to (somehow) calibrate the model or
compensate for the errors in the model.

The above discussion suggests that it
would be useful to direct a part of future
analytical or computational modeling efforts
towards developing an ability to predict {Os}
(instead of merely predicting {Op}):

(o} (O}

[Ms]

[Ms] = The process model aimed at
predicting {Os} — unlike [My] which
predicts {Op}

A Possible Nudge

Fig. 10
10. A Case Study
Several projects have recently been
initiated at the author's laboratories to




implement and test some of the approaches
described above. The following provides a
description of the progress made on one of the
more promising projects.

The aim of the project (see Fig. 11) is to
enhance an existing turning center so that it
acquires the ability to (i) autonomously perform
on-machine inspection of the parts machined,
(ii) continuously learn from the dimensional
errors it has discovered, (iii) anticipate the
dimensional errors expected on the next part
from the uncompensated part program, and
(iv) compensate the part  program
appropriately.

The system attempts to compensate for
machine tool errors (kinematic, positioning,
etc.); thermal deformation errors; and the
elastic deflections of the machine tool,
workpiece, and cutting tool under the cutting
load.

Preliminary laser measurements are used
to determine the distribution of the machine
tool errors and thermal deformation errors (as
functions of cutting time). A BPN may be
trained to learn the information thus obtained.
Next, simple analytical models are developed
for the compliances of the machine tool and
the workpiece. Only semi-empirical models
(after M. Kronenberg) have so far been
adopted while modeling the radial component
of the cutting force. The models when put
together may contain over ten unknown model
coefficients which change from one cutting
situation to another.

On-machine inspection is performed by
using the ‘Fine Touch’ principle [7]. “Fine
Touch’ enables the use of the cutting tool itself
as the contact probe by sensing changes in the
signal from an electromagnetic coil placed
around the tool (or the workpiece). The method
is capable of detecting contact within a
positional accuracy of 1 um.

The major problem that arises is
regarding the unknown coefficients of the force
and compliance models which need to be
calibrated for each new cutting scenario. To
solve this problem, initial values for the
compliance model coefficients are determined
from the preliminary experiments and, for the
cutting force model, from a simple static MDB.
It is left to the neural network to integrate all
the information.

The system has been implemented in
mostly in the manual mode, i.e. the functions of
many of the modules and the interfacing
between the modules has been implemented

manually. The results have shown that the
dimensional errors, which are of the order of
80 um for the uncompensated part programs,
can be decreased to around 5 um. This is an
encouraging result since the random error itself
of the machine tool is of the order of 3 um.
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