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ABSTRACT 
Some fundamental difficulties associated with developing industrially applicable models of machining are 
noted. It is suggested that progress towards the goal of industrial acceptance could be accelerated by 
integrating modeling with parallel developments in sensing and learning. Several such integration 
strategies are discussed. 
 



 

1. INTRODUCTION 
For over five decades, metal cutting scientists worldwide have been striving to develop reliable and robust 
models for machining operations. As a consequence, a variety of models are available today for predicting 
chip dimensions, cutting forces, temperatures, tool life, etc. Initially, these models were directed towards 
simple operations such as single edge orthogonal/oblique cutting which are rarely used in industry. 
However, these efforts were necessary to gain a deeper understanding of the machining process and to 
lay a foundation for modeling practical operations whose geometry tends to be much more complex. 
Indeed, in recent decades, these models have been extended to industrial operations such as turning, 
milling, and drilling.   
 
The modeling efforts described above have provided us with a deep understanding of the varied 
manifestations of the machining process in different operations. To that extent, they have been valuable. 
However, generally speaking, modeling of machining continues to seriously lag behind the modeling of 
other metal deformation processes (e.g. rolling, drawing, extrusion, and forging) in terms of industrial 
acceptance.  
 
The present paper examines some fundamental difficulties associated with the robust modeling of 
machining and suggests that progress towards the goal of industrial acceptance could be accelerated by 
integrating modeling with parallel developments in sensing and learning. The main intention of the paper is 
to stimulate discussion on the integration strategies.  
 
 

2. DIFFICULTIES ASSOCIATED WITH MODELING OF MACHINING 

 

2.1 Large Variety of Machining Operations 
There exists a large variety of machining operations each requiring a tailor-made model. Turning is a 
continuous operation so that a steady state model suffices. In contrast, milling is an intermittent operation 
where the steady state is never reached owing to the continuous change in un-cut chip thickness.  Unlike 
in turning and milling, the geometry of the cutting wedge is continuously varying along each cutting edge in 
drilling so that it becomes necessary integrate the effects along the edge.  
 

 

2.2 Large Variety of Internal Variables 
In predicting forces using the shear plane approach, one needs to know the mean shear stress on the 
shear plane which, in turn, depends on the combination of shear strain, strain rate and temperature at the 
shear plane. Hence, models for these internal variables are required. Further, there appears to be a 
natural order of variables in the sense that the preceding variable is needed in the prediction of the 

following one: chip dimensions  forces  temperatures  wear rate  tool life  economic 
performance measures [1]. Thus often, a series of models for specific sets of internal variables needs to 
be woven together in order to predict the desired output variable(s).  
 

 

2.3 Difficulties in Determining the Work Material Properties 
The magnitudes of strain, strain rate and temperature involved in machining are several orders higher 
than those that can be handled by current material test equipment.  Further, the variety of work materials 
to be addressed by modeling of machining operations is several orders larger than that facing modeling of 
other metal processing operations. A way out of this problem is to recognize machining itself as a material 
test as advocated by [1, 2]. Armarego‟s school has been particularly successful in predicting cutting forces 
in a number of practical machining operations (turning [3], end milling [4], face milling [5], and a variety of 
drilling operations [6, 7] from a common data base of basic machining parameters influenced by work/tool 
material properties (shear angle, chip flow angle, edge forces, shear stress, and tool-chip friction 
coefficient amongst others) obtained from simple single edge oblique cutting tests on each work material.   
 
Another problem that is crucial in finite element modeling is the selection of the chip separation criterion. 
Uncertainties continue to exist with regard to the use of limit strain and limit energy approaches.   



 

 

2.4 Small Scale of Operation 
The volume of material undergoing machining is much smaller than that in most other metal forming 
operations. Warnecke has amply demonstrated in his recent video [8] that the size, shape and dispersion 
of grains and metallurgical phases as influenced by heat treatment have significant influence on the nature 
of chip formation. An implication is that concepts of continuum plasticity may not be adequate and one 
may have to consider meso-plasticity. The small dimensions of cut also require us to recognize size-effect 
[9] and the influence of dislocations [10]. The cut dimensions are comparable to the magnitude of the 
cutting edge roundness (lack of edge sharpness) so that influence of stagnant zone and  “ploughing” 
effects at the rounded cutting edge on cutting forces can be large [11].  No satisfactory models for these 
edge effects have so far been developed so that most cutting force models have had to make the 
unrealistic assumption that the cutting edge is perfectly sharp. 
 

 

2.5 Non-unique Chip Geometry 
The situation in machining is quite different from metal forming operations such as extrusion where the 
output geometry of the material being processed is fully determined by the tool (die) geometry. In 
machining, the chip can assume any thickness and there is much evidence that this often depends on the 
state of initial tool-work contact. In other words, the machining process is inherently not uniquely defined 
[12]. 
 

 

2.6 Large Variety of Modes of Chip Formation   
Chip formation can take a variety of forms: type I: discontinuous chips, type II: continuous chips without 
built-up edge, type III: continuous chips with built-up edge, serrated chips, etc. Other aspects affecting 
chip form include the influence of chip formers and external obstacles encountered by the chip. The 
modeling approach required for each state tends to be quite distinct. Hence it becomes necessary to 
predict the mode of chip formation so that the appropriate model for predicting the desired output can be 
invoked.  
 
 

2.7 Need for Large Machining Databases  
As a result of the large variety of machining operations, work materials, internal variables, and states of 
chip formation to be addressed by machining operation modeling has required the support of large 
machining databases. We have already noted that the database used by Armarego for instance. However, 
the creation of these databases is an expensive activity requiring extensive off-line experimentation. This 
feature has been a major hurdle in transferring models to the industry. 
 
 

3. THE MAJOR PROBLEM: MACHINING DATABASES (MDb) 
It is clear from the previous section that industrially applicable machining models invariably require 
massive machining databases (MDb) consisting of data on the work material flow stress magnitudes, 
shear angles, chip flow angles, mechanical and thermal properties of the tool material, etc. An MDb is 
mainly required to guide the selection of the magnitudes of an array of model coefficients, {C}, used by the 
machining model, [Mp], in predicting the desired array of performance measures, {Op}, from the given 

array of nominal input variables, {In}  see Fig. 1. 
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With regard to the MDb, two approaches are in vogue. The first attempts to obtain the properties of work 
materials from fundamental or, more appropriately, non-machining tests. The problem is that these tests 
need to be carried out at conditions approximating the large strains, strain rates, and temperatures 
prevailing in machining. Only limited success has been achieved in this regard so far. Further, the tests 
that are available are very expensive to conduct.  
 
The second approach (pursued by Armarego, Venuvinod, etc.) utilizes machining (in particular, single 
edge orthogonal/oblique  cutting) itself as the material test [13]. Methods are then found to extrapolate 
these data to more complex cutting situations. 
 
Whatever the approach used, the creation of machining databases (MDb) requires extensive off-line 
experimentation, Xoff, and is therefore expensive. Further, the database needs to be constantly expanded 
as each new work/tool material combination and tool geometry is encountered.   
 
 

4. INTEGRATING MODELING AND SENSING 
Sensing involves the measurement and monitoring of the desired subset {Os} of the process output and 
processing the signals collected through a signal processing algorithm or system to yield an array of 

sensed features {S}   see Fig. 2. 
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The following was noted in [14]:”[T]here is significant interest in sensing and  monitoring. A more detailed 
study of the [literature] database has shown that much of this interest has appeared since the mid-eighties 
and that the sensing techniques have generally been augmented by Artificial Neural Nets and such AI-
based techniques. On occasion, there has been a model-based processing of sensory data.” Further, 
“[A]coustic emission has emerged as the predominant sensing technique in on-line process monitoring.” 
 
It was noted in section 3 that a major problem with traditional modeling approaches is the need to calibrate 
the model coefficients through a machining database MDb. Hitherto, machining databases have been 
compiled through extensive off-line experimentation. As we have noted, a reliance on such static 



databases leads to the inability of the model to perform effectively when there are minor perturbations in 
input conditions. These perturbations (inherent variability) cannot generally be anticipated and, owing to 
the inherently non-unique nature of the chip formation process, leads to large prediction errors.  
 
In contrast, modern sensing technologies enable us to perform on-line or real-time measurement of 
outputs. Sensing and sensor fusion technologies are getting better every day. Is it time now to abandon 
the concept static databases in favor of dynamic databases, i.e. in favor of data obtained through on-line 
sensing? Such real-time data are likely to be superior to static databases since they have been collected 
while the same perturbations exist in the input conditions.  
 
However, there is one problem to address.  A model [Mp], is usually created to predict {Op}. But the 

sensors measure {Os}, which  may or may not have an intersection with {Op}  see Fig. 3. How can we 
solve this problem? 
 
The answer probably lies in the  realization that both  {Op} and {Os} are outputs from the very same 
process [P] as the latter manifests in real time. Hence, {Os} should contain much information concerning 
the way [P] behaves for the nominal input {In}. All we need to do is find a way of utilizing this insight 

towards  determining the corrections {C} that need to be made to the initial model coefficient set {Ci} 
derived from a static machining database.  
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Calibrating A Predictive Model by Using Sensed Output 
Fig. 3 

The author has attempted a variation of the above approach with some success in compensating for 
workpiece dimensional errors in turning [15].  
 
Finally sensing may also be helpful in identifying the operating mode of chip formation. For instance, AE-
sensing might be able to identify, in real time, the mode of chip formation: e.g. Type I (discontinuous), 
serrated, Type II (continuous without built-up-edge), or Type III (continuous with built-up-edge, etc. Such 
identification is essential before one can invoke the appropriate predictive model if it exists (note that 
almost all the predictive models available today assume that chip formation is of Type II). 
  
 

5. INTEGRATING MODELING, SENSING AND LEARNING 
Learning is usually based on pattern recognition and clustering techniques such as Artificial Neural Nets 
(ANN). More recently, there have been applications of Chaos,  Fractal, and Wavelet theories in signal 
processing to support more effective learning.   
 
An ANN can be supervised or un-supervised. Amongst the various types of supervised ANN, the Back 
Propagation Net (BPN)   has   become  particularly  popular.   
 
A supervised ANN operates in two modes: Training Mode, and Test or Utilization Mode.  In the training 
mode a set of data/signals  ({Il} are input to the learning network. In addition, the network‟s connection 
weights [W] are adjusted to an initial set. Off-line experiments are conducted with the given process using 

a training set of {Il} arrays  see Fig. 4. The sensed outputs {Os} are used as training data to yield a set of 



corrections [W] for [W]. The cycles are  repeated until the network outputs signals, which agree with the 
experimental outputs within an  acceptable   error  margin. [W ]is then frozen so that the network becomes 
the trained network. The network can then be used to „predict‟ the outputs for new instances of {Il}.  
 

{Il} LN {Op}

{W}
 

{Il}: Inputs to the learning system 
[W] : Matrix of Connection Weights 

LN : Learning Network 
Prediction by Using a  

Learning System 
Fig. 4 

 
 

The performance of learning systems has been variable. Intuitively speaking, a learning system should be 
able to predict effectively if it is able to capture the essence of the process. It follows then that if the 
process were more complex (i.e. it has more uncertainty, more non-uniqueness, has a larger network of 
cause-effect-relationships, etc.) then one would require a more complex learning system. 
 
What factors could influence the prediction effectiveness of a learning system? To the author‟s knowledge 
no rigorous answer is available today. Hence we will resort to the intuitive proposition that the learning 
effectiveness of a learning systems (such as BPN) can be increased by: 
1. adopting a more complex network architecture (this is likely to increase the cost and processing time, 
hence we will leave it out of the present discussion); 
2. increasing the number of training cycles (this also will increase the time required for training and, as 
encountered often in practice, there might be saturation effects; hence we will leave this alternative 
alone.); and 
3. increasing the size of the input array {Il}. 
 
Let us focus on the last approach. How can we increase the size of the input array {I l}?  We have already 
used up all the known inputs. Hence we need to look elsewhere. How about {Os}? The present modeling 
ethos assumes that it can down without a knowledge of {Os} in the prediction of {Op}. This approach has 
only been partially successful. However, we have already noted that {Os} does contain some insight into 

[P]  see Fig. 5. If so, why not include {Os} as one of the inputs to the learning system? 
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Fig. 5 
 
 

The above strategy might look similar to many recent works where a combination of sensing and learning 
has been used.  However, in these works, the output to be sensed was both {Os} and {Op}, i.e. one or 
more of the performance measures were also sensed.  In contrast, in Fig. 5, there need be no overlap 
between {Os} and {Op}.  One may use only those sensors, which are convenient and are known to be able 
to reasonably capture the essence of the process and learn to predict any performance measure. 
 

Another approach is to supplement the input array with model predictions  see Fig. 6. 
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Augmenting Learning with Modeling 

Fig. 6 
 

 
The predictions, {Op}pr, from the model contain much insight into the behavior of the process by virtue of 
the accumulated knowledge on machining that the model incorporates and the empirical information 
contained in its MDb. However, unlike in the case of conventional modeling, the model [Mp] is not 
expected to perform accurate quantitative prediction.  It is left to do what it does best, i.e. anticipate the 
qualitative trends of {Op}. Augmented with this additional insight, hopefully, the learning system will 
perform faster and better. In contrast to the current practice, the MDb supporting the model need not be 
elaborate and highly accurate. The learning system will eventually learn to correct the errors arising from 
the MDb.  
 
Fig. 7 shows another method of combining the benefits derivable from modeling, sensing and learning. 
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Fig. 7 
 
 
 



All the approaches described above have aimed  at predicting {Op}. With well-researched implementation, 
they are likely to be effective when (i) the sensing system measures the desired {Op}, and/or (ii) the   
learning  system  is    trained   to   learn {Op}. However,  what should one do when, as is often the case, 
one does not have sensors to measure {Op}, or when no reliable off-line data exists to learn {Op}? 
 
To illustrate the above problem consider  the case of sensing using acoustic emission (AE) signals which 
has become particularly popular in recent years. Many ANN based learning systems have been developed 
in association with AE. But, note that AE is not a performance measure. It is merely a conveniently sensed 
signal. How can the measured AE signals aid the process of predicting {Op}? Clearly, much further 
research is required before one can find a satisfactory answer to this question. 
 
Finally, consider the specific case of predicting cutting forces when AE constitutes the {Os}.  It has been 
observed that there is a strong correlation between  „True Mean Square (TMS)‟ of the AE signal and the 
measured cutting force components [16].  Thus it should be possible to gain much insight into the real-
time process phenomena that influence cutting force magnitudes through real-time sensing of AE. 
Further, a learning system based on data obtained through [Mp] may not need to have a very 
comprehensive MDb when the learning is augmented by AE. This is because the information obtained 
from the AE signals could be used to (somehow) calibrate the model or compensate for the errors in the 
model. 
 
The above discussion suggests that it would be useful to direct a part of future analytical or computational 

modeling efforts towards developing an ability to predict {Os} (instead of merely predicting {Op})  see Fig. 
8.   
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