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Abstract

The works of Nakayama et al. represent the prevailing view on how the geometry of 3-D helical chip
relates to the radii of its up-curl and side-curl. The view is re-examined in this paper and it is shown that
the corresponding definitions of the radii are ambiguous. Six sets of alternative hypothetical definitions of
up-curl and side-curl radii, which are consistent and plausible when examined from the viewpoints of 2-
D up-curl and side-curl, are identified and the respective expressions are derived from a geometric analysis
of 3-D chip. The hypotheses are tested using six criteria. It is found that the expressions for the radii of
up-curl and side-curl proposed by Nakayama et al. do not satisfy one of the criteria whereas a new solution
satisfies all the criteria. Part 2 extends the 3-D geometric analysis and discovers a number of new impli-
cations. © 1999 Published by Elsevier Science Ltd. All rights reserved.
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Nomenclature

Ay Axis of H

Apg, projection of Ay on P,

e normal distance between Ay, and axis X; distance between points Oy, and O
f distance between Og and O,

H helical path generated by the chip particle at point O

By, i projections of helix H on planes XY, YZ, and ZX respectively
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projections of helix H on planes XyYy, YyZ,, and ZyXy respectively
tool-chip contact length measured
an arbitrary point on the TCSL
point at which the line passing through O in a direction normal to Ay meets Ay
projection of O on Ay,

pitch of helical chip

tool rake plane

transformation matrix from system XYZ to system XuYyZy

transformation matrix from system XYZ to system XvYvZy

time measured from the moment the chip particle at O leaves the TCSL

tool chip separation line

velocity of chip particle at O (assumed to lie on )

right-handed Cartesian axes centred at O such that X is parallel to Ay, , Z is
positively directed outward from the tool rake face and Y is perpendicular to
Apn, while being parallel to . d

right-handed Cartesian axes centred at Oy and directed parallel to axes X, Y,
and Z respectively

right-handed Cartesian axes centred at Oy such that Xy is directed from Oy to
O and Zy is directed along ®

right-handed Cartesian axes centred at O such that Yy is directed as V, Zy is
iti and Xy is parallel to P,

the axes are directed

in a direction normal to the cutting edge

right-handed Cartesian axes centred at Oy such that
parallel to axes Xy, Yy, and Z,, respectively

angle between the major cutting edge (assumed to be straight) and TCSL
chip flow angle: angle between V, and the normal to the cutting edge in P,
angle between V., and axis Y

vector of curvature of helix H at point O

angle between Ay and Ag,

position vector of a particle of H at point O joining O to O

the third radius of chip curl complementing p, and ps that may exist under
some definitions of p, and ps When the chip form is 3-D
radius of chip side-curl

radius of chip up-curl

radii of rotation of the chip particle at O about axes X', Y', and Z’ respectively
radii of rotation of the chip
respectively

radii of curvature of H*, H** and H=

particle at O about axes Xv', Yy/, and Z,’

respectively
radii of curvature of Hwv, Hovey and H>* respectively

angular velocity of rotation of the chip particle at O about helix axis Ay
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Scalars are presented in regular font. If a vector corresponding to a scalar exists, it is represented
by a similar symbol in bold font. The presence of x, X', Xg, Xv, V> ¥'» Y Yv» Z, Z', Zgg OF Zy in
the suffix of a symbol indicates that the symbol refers to the component of that vector along the
specific axis.

1. Introduction

The need for periodical manual removal of entangled chips from the cutting zone continues to
be a major hurdle in the realisation of unmanned machining of metals. Machining industry cur-
rently relies on cutting inserts with appropriate chip formers (bumps and troughs on the rake
surface) to solve the problem of chip breaking. However, in practice, each chip former design is
found to be effective only in a narrow range of cutting situations. Further, owing to the absence
of a systematic theory of chip form development, the design of these chip formers has remained
an experimental art. The result has been an unnecessary proliferation of chip former designs.
More recently, it has been suggested that it should be possible to achieve active chip control by
controlling the location and orientation of an obstruction type chip former relative to the cutting
edge in response to the chip form detected by a set of on-line sensors [1]. However, a prerequisite
to the success of this approach is the availability of a systematic method for decomposing the
geometry of a given chip form into a set of basic elements which can be related in a meaningful
manner to the process of chip formation itself.

It is generally accepted that initially continuous chips are born curled and may subsequently
break because of forces arising from an encounter with an obstacle (e.g. a tool or work surface)
external to the chip formation zone. When the external forces are light, they merely modify the
deformation pattern within the chip formation zone which, in turn, modifies the chip form as the
chip leaves the cutting zone. Such a chip may be viewed as lightly obstructed. The present paper
is confined to the analysis of such chips and unobstructed chips. When the external forces are
strong, the deformation pattern within the chip formation zone is unable to adapt and the chip
may experience further plastic deformation (or, even, breaking) outside the chip formation zone.
Clearly, the geometry of the chip during the lightly loaded phase determines the possibility and
nature of chip breaking. The majority of unobstructed or lightly obstructed chip forms obtained
in continuous cutting operations such as turning are particular cases of 3-D helical chips. Thus,
according to the popular chip form classifications such as those developed by Spaans [2] and ISO
[3], chip types such as straight ribbon, tubular, corkscrew (washer) and conical helical chips are
all particular cases of 3-D helical chip. Other chip types such as spiral, and arc chips can be
considered as helical chips whose progression has been unsteady or arrested due to chip breaking
respectively. Hence, while analysing chip forms, it is essential to have a logically consistent view
of the mapping between the 3-D and 2-D manifestations of helical chip forms.

The work of Nakayama et al. [4,5] seems to represent the currently reigning paradigm concern-
ing the geometric analysis of 3-D chip forms. These authors note that “basically the chip has a
screw surface”. They represent each helical trajectory, H, on this screw surface in terms of its
radius, p, pitch, p, and the angle, 6, between the axis of the helix and the tool rake plane (see
Fig. 1a). Further, they suggest that the geometric form of the chip prior to its breaking is com-
pletely determined by the velocity and curl states of the chip at the moment the chip leaves the
tool-chip separation line (TCSL).
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These velocity and curl states are in turn determined by the complex deformation patterns
experienced by the work/chip material as it passes through the primary and secondary deformation
zones prior to arriving at the TCSL. Thus the TCSL represents the boundary between the worlds
of chip form analysis and chip formation analysis. Fig. 2 (adapted from [4]) illustrates the location
and orientation of the TCSL in a turning operation. Generally speaking, the TCSL is not parallel
to the cutting edge. No complete model for estimating the angle, Ay, between the TCSL and the
cutting edge is yet available. When Ay#0, the distance between the TCSL and the cutting edge
(i.e. the tool-chip contact length, I.) is not uniform. A non-uniform contact length suggests a non-
uniform chip velocity across chip width. Greater this non-uniformity, greater is the side-curl of
the chip. A review of literature on chip formation reveals that, although there have been many
investigations related to /. when it is constant, the more general case of non-uniform /. has not
yet been studied satisfactorily. This means that, in most cases, we do not have the means of
estimating either the orientation or the location of the TCSL. Consider now our ability to estimate
the angular deviation, ), of the chip velocity from the normal to the TCSL. It follows from Fig.
2 that m = m. — Ay [4,5] where 7, is the chip flow angle with respect to the cutting edge. While
much literature exists with respect to 7., there is no solution available for estimating Ay. Hence,
it continues to be problematic to estimate 7. It therefore appears that there are two essential tasks

(a) Chip helix (b) Orthogonal circular arcs
in XOY and YOZ planes

Fig. 1. Helix as a compound of two orthogonal circular arcs (adapted from Nakayama and Arai [5]).
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Fig.2. TCSL in turning (adapted from Nakayama and Ogawa [4]).

in chip analysis. The first concerns the determination of the parameters of the TCSL (such as its
location and the velocities of the chip particles along that line) from the viewpoint of the world
of chip formation that manifests before the chip has arrived at the TCSL. The second task concerns
how one may connect the parameters of the TCSL to the chip form that develops after the chip
has left the TCSL and has entered the world of chip form analysis. While both these tasks are
important, the present paper will focus on the second task. The solution of the second task is
expected to open up new ways of addressing the first task.

A problem arising in the mapping between the 3-D and 2-D manifestations of helical chip
forms is that, whereas chip form analyses need to be 3-D, almost all our present knowledge
concerning chip form has been represented in terms of two orthogonal 2-D states of chip: pure
(i.e. unmixed with another curling) up-curled chip and pure side-curled chip. For instance, reco-
gnising their dominance in the literature on chip formation, Nakayama et al. [4,5] have utilised
the concepts of chip flow direction represented by angle m, the radius of side-curl, p,, and the
radius of up-curl, p,, while attempting to express the 3-D chip form parameters p, p and 6. Note
that p,, m and p, are essentially concepts related to two orthogonal 2-D states (see Fig. 1b).

It should be clear from the above that we are faced with the task of characterising a 3-D
phenomenon from information concerning its fwo orthogonal 2-D views. Experience shows that
one should generally expect ambiguities when one tries to map from two 2-D views to a 3-D
view. For example, in the realm of graphics, a triangular prism could be interpreted as a compound
of two quadrilateral projections or as a compound of one quadrilateral projection and one triangu-
lar projection. However, no ambiguities usually arise if three orthogonal 2-D projections are given.
Likewise, no ambiguities usually exist in a mapping from 3-D to 2-D.
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The principal intent of the present paper is to identify and resolve the ambiguities, if any, that
arise while expressing steady-state 3-D helical chips in terms of the parameters 7, p, and p, of
two orthogonal 2-D views of the chip. As in [4,5], the analysis focuses on the fundamental case
of machining with tools with flat rake faces. It would be difficult to study the chip forms obtained
with complex chip formers if one does not have a clear understanding of the simpler case of
cutting with flat rake face tools. Further, an equivalent flat rake face is often invoked in the
analysis of cutting with complex chip formers.

It will be argued that there exist several plausible definitions of p, and p, depending on the
chosen viewpoint concerning up-curl and side-curl components of a 3-D chip. A 3-D chip form
analysis will be developed to identify the relationship corresponding to each definition between
the parameter set (p, p and 6) of the 3-D chip form and the parameter set (p, and m, p,) of the
two 2-D views of chip up-curl and side-curl. It will be shown that these relationships are distinct
and the relationship presented in [4,5] seems to be just one of them. The alternative relationships
will be compared to identify the most logical candidate(s).

2. Alternative plausible definitions of up-curl and side-curl radii

Consider the definitions adopted in [4,5] first. Fig. 1b is an adaptation of the illustration used
by Nakayama and Arai [5] in defining the radii of up-curl (p,) and side curl (p,) while machining
with a tool with a plane rake face. In this illustration, axis X is along the TCSL, axis Y is
perpendicular to X while being parallel to the rake plane, and axis Z is perpendicular to both X
and Y (i.e. perpendicular to the rake plane). The origin is set on axis X at the end cutting edge
side of the chip. According to [5], “when the two circular arcs in the Fig. 1b are compounded,
the helix in Fig. la is produced”. The radius of the arc in plane YZ is then taken as the radius
of up-curl, p,, whereas the radius of the arc in plane XY is taken as the radius of side-curl, p,.

The following characteristics of the pure forms of up-curl and side-curl are recognised in [4,5]:

® Pure up-curl: The TCSL is parallel to the cutting edge, i.e. Ay = 0. Hence the plane normal
to the TCSL is identical to that normal to the cutting edge. Tool-chip contact length, I, chip
velocity, V., and p, are uniform along the TCSL The chip axis is parallel to the rake plane, i.e.
6 = 0. Likewise, n = 0 and n. = 0. The chip geometry is completely determined by considering
just the plane normal to the cutting edge.

e Pure side-curl: V., is linearly varying along the TCSL so that A¢#0 and p, is not constant
along the TCSL. The chip axis is normal to the rake plane, i.e. |§| = 90°. The chip geometry is
completely determined by considering just the tool rake plane (i.e. the plane XY).

Nakayama et al. [4,5] considered 3-D chip formation and assumed that plane YZ is the plane
of up-curl and that the projections of velocity V. of the chip particle on planes YZ and XY
respectively match, as instantaneous linear velocities of rotations, the angular velocities of
rotations with respect to up-curl and side-curl. Further, they noted that the angular velocity, ,
of the 3-D chip has only two non-zero components, ®, and. ®,, perpendicular to planes YZ and
XY respectively. Hence they identified these as the angular velocities of up-curl in plane YZ and
side-curl in plane XY respectively. Thus, the radii of up-curl and side-curl of 3-D chip were taken
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to be the radii of rotation in planes YZ and XY respectively. This procedure led to expressions
for w, and w, in the form of equations (N1) and (N2) listed in Table 1. These expressions were
then utilised in relating to 3-D helical chip geometry to arrive at equations (N3) and (N4) for 6
and p respectively. Note that, although Nakayama et al. [4,5] had not explicitly stated them, a
combination and rearrangement of equations (N3) and (N4) leads to equations (N5) and (N6) for
p. and p, respectively (see Table 1).

However, a deeper examination of the analysis of Nakayama et al. points to several potential
inconsistencies. For instance, the analysis assumes that the angular velocity of pure up-curl lies
in the plane XZ. Whereas, in the case of a 3-D chip, this angular velocity, w,, can lie in a plane
which has a non-zero offset from plane XZ. Therefore a potential inconsistency exists with regard
to equation (N2). Hence there is a need to define p, and p, in such a manner as to avoid inconsist-
encies when analysing 3-D chips. We then tried to find such definitions. However, it soon became
clear that this can be done from several viewpoints. Firstly, one can adopt the viewpoint of rotation
or that of curvature. Secondly, one can view them with reference to the TCSL (it will be shown
later that the TCSL has to be straight and parallel to Ay, if the chip is helical) or the chip velocity
V. (since, in the case of pure curl the plane normal to the TCSL is identical to the plane parallel
to V. and normal to the rake plane). Finally, one can consider them to be the components of the
radius of chip particle rotation in the desired directions or the radii of the rotation components
about the desired axes. This range of viewpoints may be captured in the six alternative sets of
definitions of p, and p, described below.

Hypotheses concerning the definitions of p, and p,:

1. p, is the component of the position vector p (the radius vector of rotation of chip particle at
point O around chip axis) in the direction normal to the tool rake plane. p, is the remaining
component of p parallel to the rake plane.

Table 1
Equations developed or implied by Nakayama et al. [4,5]
Equation No. Note Equation
NI 4 w, = Vdp,
N2 [4] o, = (Vcosn)/p,
N3 [4,5] tanf = w,/ow, = p/(p.cosn)
N4 [4.,5] i \/ 1 — sin?ncos?6
P~ N (coswip? + (Upy?
N5 By combining N3 and N4 = pcosm
P = CosoNT — sin’ncos’f
N6 By combining N3 and N4 p

P = SineNT — sin’ncos’6
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2. p, is the radius of rotation of chip particle at point O around the axis directed parallel to Ag,
(TCSL). p, is the radius of the corresponding rotation about the axis directed normal to the
rake plane.

3. p, is the radius of curvature of the chip helix at point O in the direction normal to the rake
plane. p, is the radius of the remaining curvature in a direction parallel to the rake plane.

4. p, is the radius of curvature at point O of the projection of the chip helix on a plane normal
to Ay, (TCSL). p; is the corresponding radius of curvature of the projection of the chip helix
on the rake plane.

5. p, is the radius of rotation of point O around the axis directed normal to the chip velocity
vector V. while being parallel to the rake plane. p, is the radius of the corresponding rotation
about the axis directed normal to the rake plane.

6. p, is the radius of curvature at point O of the projection of the chip helix on the plane parallel
to the chip velocity V., while being normal to the rake plane. p, is the corresponding radius
of curvature of the projection of the chip helix on the rake plane.

The next section will determine the expressions for the various parameters that equate to p,
and p, respectively following the six alternative hypotheses in terms of the geometric parameters
(p, 6, and m) of the generalised 3-D helical chip. The analysis will also identify the 3rd radius
component, ps, if it exists in view of the 3-D nature of the mixed chip.

3. Geometric analysis of 3-D helical chip

Fig. 3 illustrates the geometric analysis. In contrast to [4,5], where it was assumed that the
TCSL is a straight-line segment, we will start with the assumption that the TCSL is a plane curve.
The right-handed Cartesian system XYZ is centred at an arbitrary point, O, on the TCSL. Axis
Z is normal to the rake plane, P,, with the positive direction outward from the tool rake face (as
in [4,5]). Axis Y is normal to the projection, Ay, of the chip helix axis, Ay, on P, and is directed
towards the right as shown in Fig. 3 (a generalised definition of the direction of Y will be provided
in Part 2). Note that axes X and Y lie on P,. In Fig. 3, 0,00, is the TCSL which is initially
assumed to be curved. The outer surface of the chip is generated due to the helical motion of the
TCSL about axis Ag. Thus, points O, and O, are the boundary points on the TCSL that generate
helix H, with radius p, and helix H; with radius p, respectively. The convention adopted is that
po > p;. This means that when p, = p,; (as in the case of a tubular helical chip), the choice
of points O, and O, becomes uncertain. However, either choice would lead to the same chip
form parameters.

V. is the velocity of the chip particle at O, which should lie on the tool rake plane [4]. Let n
be the angle between V_ and axis Y. A trajectory of the chip particle starting at point O is a
circular helix, H. Hence V_ can be resolved into two orthogonal instantaneous velocities Vy and
Vg: Vi is the translational velocity parallel to the helix axis, Ay, and Vy, is the rotational velocity
corresponding to the angular velocity of rotation, @, about Ay. A steady state chip implies a
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Fig. 3. Geometric analysis of 3-D helical chip forms.

TCSL that remains constant in space and time. The analysis in Part 1 will mainly present the
expressions for various important parameters related to point O of the TCSL, i.e. to helix H. The
analysis will be extended in Part 2 to the entire chip, i.e. to helices H, and H,.

The following equations can now be progressively obtained from the above scenario:

vc = Vc{Sinns COSTL O}XYZ (1)
V.=Vg + V; 2
Vi = V_sinncosf 3)

V1 = Vsinncosf{cosh, 0, — sinf}xyz @

Vi = V. — V= V_{sinnsin?6, cos, sinnsinfcosf}xy- (5)
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Vi = VAT — sin®ncos?6 (6)

Ve V.1 — sin®ncos?6
PERL P (7)
p p

_ VA1 — sin®ncos?0
p

w {COSB, 0, - Sine}xyz (8)

27psinm cosf
V1 — sin?ncos?6

p = Qmlw)Vy = ©)

At this stage, it is useful to introduce another right handed set of Cartesian axes, Xy, Yy, and
Zy centred at O such that Yy is directed along V., and Zy is normal to the rake plane (Zy = Z).
The following equation can be used to transform a variable from system XYZ to system XyYyZy:

Xy cosm — sinm 0
yy( = [Ryljy( where [Ry] = |sinn cosm 0 (10)
28 z 0 0 1

Let Oy be the point on Ay such that line OOy is perpendicular to Ay. Clearly, the position
vector (or the radius vector), p, of the helix generated by point O has a magnitude equal to
distance OxO and is directed along OxO. Let u,, uy,, and u,, be the unit vectors directed along
P, Vi and o respectively. Then u, must be directed normal to uy, as well u,, because Vy = @
X p. Thus,

P = pu, = p(uy, X u,) = (Vg X 0)/e?

o P
~ V1 — sin®ncos26

{ — cosmsiné, sinmsind, — cosmcosO}xyz (11)

p .
TAT- sin’*ncos*6 { — sin6, 0, — cosmcosb}y v z,

Let Oy, be the projection of O on Ay,. Let e and f be the distances Og,0 and OxOy, respect-
ively. It can be shown from Fig. 3 that

psinmsiné  Vqtanf
1 — sin’ncos?6 w

e=p =7 (12)
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___peosn
~ 1 — sin®ncos?6

12 (13)

If it is assumed that the chip is in steady state helical motion as a rigid body after leaving the
TCSL, every helix on the chip must have the same V; and w. Applying the conditions of con-
stancy of Vi, w, and 6 to Eq. (12), it follows that the magnitude of e must be the same for every
point on TCSL. This implies that (i) the TCSL must be a straight-line segment, and (ii) the
segment must be parallel to Ay,. Hence the TCSL has to be a straight-line segment collinear with
axis X.

Recall that point O, generates the chip helix with the largest radius whereas point O, generates
the helix with the smallest radius. If we locate O, at the end cutting edge side of chip and O is
taken to represent O, (which generates the outer helix), then our axes X, Y, Z (Fig. 3) will
coincide with axes X, Y, Z used in [4,5]. Otherwise, point O should be taken to represent point
O, (generating the inner helix) to obtain coincidence between the two coordinate systems. It is
therefore evident that the Cartesian axes used in [4,5] do not always correspond to the outer or
inner helix of the chip. Hence, for two chips with geometrically identical screw faces, the estimates
of up-curl and side-curl radii resulting from the analysis in [4,5] can differ significantly depending
on whether the axis system happened to be centred on the inner or the outer helix of the screw
surface of the chip.

It is now possible to develop expressions for estimating p, and p, and the corresponding 3rd
radius component of chip curling (if it exists) following hypotheses 1 to 6.

e Hypothesis 1:

Utilising Eq. (11)

— pcosncosf
Pa ™= P~ Py ™= Y7 = sinncos?0 e

B - B — psing
p=VNgE+p =g +g = V1 — sin’ncos26

(14b)

e Hypothesis 2:

This hypothesis requires the consideration of axes X', Y’, and Z’, which are parallel to axes
X, Y, and Z respectively while being centred at Oy. It can be shown that the radius of rotation,
p“x', of point O about axis X' is equal to Vp? + p? and hence

cos?ncos?0 + sin’nsin?6
puzp""x'::‘\,lpzy-f-pg:p\/ o - (153)

1 — sin’ncos?6

Following similar arguments,
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S psinf
p.=pz =\pi + pj = V1 — sin?ncos?0 (15b)

pcosn
V1 — sin?ncos?6

I

ps=pr =\p + pl = (15¢)

e Hypothesis 3:

This hypothesis requires the vector of curvature, k, of helix H to be determined at point O.
With a view to identifying the equation of H, we may define an intrinsic coordinate system
XuYyuZy centred at O such that Xy is directed as u,, (i.e. in the direction O to O), Zy is directed
as u,, (along the helix axis), and Yy is chosen such that Xz YxZy is a right-handed orthogonal
triplet. The helical path H can then be expressed as a function of time t (taking t = 0 when the
chip particle is at O) as

H(t) = {pcoswt, psinwt, V,t} (16)

XuYuZy

The above equation for H may be transformed to the coordinate system XYZ by utilising the
following transformation equation derivable from the geometry of Fig. 3:

X Xg fsin@
y{ = [Rallynf +| — ¢ (17a)
z 7y fcosO
where
-_ — cosmsiné sinmsin?6 cosf )
V1 — sin®ncos?0 V1 — sin’ncos20
sinnsin® cosm
Ryl = - 17b
(Re] V1 — sinncos?@ V1 — sin?ncos?6 ? )
— cosmcosf sinmsinfcosf g
| V1 — sin?ncos?6 V1 — sin?ncos?0 s |

Next, applying well-known principles of helical geometry, it can be shown that

k = (1/p)V1 — sin’ncos?B{cosmsinh, — sinnsind, cosncos}xyz (18)
and thus
1 — sin?ncos?0

K=lkl=——7—"— (19)
p
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Therefore, following Hypothesis 3,

ik and p
PR Kk,  cosmcosN1 — sin’ncos’6 o

v

1 1 _ P

(20b)

@ Hypothesis 4:

Applying the transformation represented by Eq. (17a) and (17b) to the definition of helix H
given by Eq. (16), it is a straight forward exercise to determine the projections H*, H* and H*
of H on planes XY, YZ, and ZX respectively and then to determine the corresponding radii of
curvature py.y, Puy, and py,, respectively at time t = 0, i.e. when the chip particle is at point O.
Thus, Hypothesis 4 implies that

B - peosT)
Pu = Padi-o cosN1 — sin’ncos?6 210

p

P = Prssli=o = sinfV1 — sinncos?6 (21b)

B psin®n
cosmcos@V1 — sinncos?6

P53 = Pmli=0 = (21¢)

e Hypothesis 5:

This hypothesis requires a procedure similar to that used for Hypothesis 2 with the exception
that, instead of considering the radii of rotation around axes X', Y’, and Z’', we consider radii of
rotation around axes X', Yv', and Zy' which are parallel to axes Xy, Yy, and Zy respectively.
Hence, it can be shown that

e e pcosmcosf
b= 0" = sin’ncos26

(22a)

B psinf
~ V1 — sin®ncos?6

b = p°%, (22b)

Pa=p=p (22c)
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e Hypothesis 6:

This hypothesis requires a procedure similar to that used for Hypothesis 4 with the exception
that, instead of evaluating the curvatures at O of projections H*, H** and H* with reference to
the system XYZ, we determine the radii of curvature py, .., Pay.z, Pay.z, Of projections H+v,
H>v* and H>* respectively. Thus,

P = Priyyl =0 = L (232)
: st cosmcos@V1 — sin?ncos?6

P = Phxyh =0 = £ (23b)
’ i i sinBV1 — sin?ncos?6

0
ps = Pszxvlz =0~ 0 (23¢)
Although p; is indeterminate according to Eq. (23c), by considering the expression
P = Przyx o (23d)
one finds that
p; =0 (23e)

4. Validation of the hypotheses

The following six criteria are believed to be necessary and sufficient for the complete validation
of each hypothesis.

From considerations of pure up-curl, i.e. when one substitutes 7 = 0 and 8 = 0 in the
expressions for p, and p,, one should find that:

Criterion 1: Ip| = p Criterion 2: lp,| = oo,

From considerations of pure side-curl, i.e. when one substitutes 8 = — 90° or 90° in the
expressions for p, and p,, one should find that:

Criterion 3: lp] = p Criterion 4: Ip,| = .

p, and p, together should be sufficient to fully account in 3-D the viewpoint from which they
have been defined, i.e. rotation or curvature. This expectation leads to the following two
additional criteria:

Criterion 5 (completeness): Either p; does not exist at all, or has zero magnitude if the definition

|
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is based on the viewpoint of rotation or has infinite magnitude if the viewpoint is based on curva-
ture.

Criterion 6 (orthogonality):

If the hypothesis defines p, and p, from the viewpoint of rotation, then V p¢ + p? must be equal
to p;

1 1
If the hypothesis defines p, and p, from the viewpoint of curvature, then \/ E + E must be

equal to k (ref. to Eq. (19)).
Table 1 summarises the results obtained from the application of the above six criteria to the
six hypotheses.

5. Discussion
It is seen from Table 2 that only Hypothesis 3 has satisfied all the six criteria. This hypothesis

is based on the viewpoint of chip helix curvature and utilises the rake plane orientation as the
reference. The definitions of p, and p, are such that the same expressions for them are obtained

Table 2
Validation of the hypotheses concerning the definitions of p, and p,

Hypothesis  Viewpoint Reference See Eq. Is the criterion satisfied?

1 2 3 - J 6

1 Rotation, Rake plane 14a, b Yes No Yes No Yes Yes
components of
radius of
rotation

2 Rotation, radii Ag, or TCSL  15a, b, ¢ Yes No Yes No No No
of components
of rotation

3 Curvature, radii Rake plane 20a, b Yes Yes Yes Yes Yes Yes
of curvature
components

4° Curvature, radii Ay, or TCSL  2la, b, ¢ Yes Yes Yes Yes No No
of curvature of
projections

5 Rotation, radii Chip velocity 22a, b, ¢ Yes No Yes No No No
of components V_
of rotation

6 Curvature, radii Chip velocity 23a, b, e Yes Yes Yes Yes No No
of curvature of V_
projections

"The expressions for p, and p, are identical to those implied by [4,5].
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whether one analyses with reference to Ay, (or the TCSL) or chip velocity V.. The generalised
3-D expressions satisfy the specific conditions of both the 2-D cases: pure up curl and pure side
curl (criteria 1-4). The third radius component, p;, does not exist (criterion 5). Finally p, and p,
together suffice to fully account for the total chip helix curvature (criterion 6).

The identification and validation of Hypothesis 3 is the main new and positive finding of the
present work. Combining Hypothesis 3 (Eq. (20a) and (20b)) with Eq. (8), it can be shown that

v
w, =— 24
Ps i
V.
w, = - (25)
p.COST
tanf = w,/w, = (p,cosn)/p, (26)

B 1 — sin’ncos?6
~ V {1(pcosm)}? + (1/p))?

p (27)

Note that although Hypothesis 6 does not satisfy criterion 5 concerning p; it leads to expressions
for p, and p; (see Eq. (23a) and (23b)) that are identical to Eq. (20a) and (20b) respectively
derived from Hypothesis 3. This observation suggests that, as far as the estimation of the values
of p, and p, that are in agreement with those derived from Hypothesis 3 is concerned, one can
take the value of p, to be equal to the value of the radius of the curvature of the projection of
the chip helix on a plane containing the chip velocity vector while being normal to the rake plane,
likewise the value of p, to be equal to the value of a similar parameter estimated from the projec-
tion on the tool rake plane.

The equations for p, and p, (see Eq. (21a) and (21b)) derived from Hypothesis 4 are identical
to equations (N5) and (N6) respectively implied by Nakayama et al. [4,5]. This observation sug-
gests that the same values of p, and p, as derivable from [4,5] are obtained if one takes p, to be
the curvature of the projection of the chip helix on a plane perpendicular to the TCSL while
being normal to the rake plane and p, to be a similar parameter estimated from the projection on
the rake plane. However, Hypothesis 4 has to be rejected because it does not satisfy criteria 5
and 6. In fact, Nakayama et al. [4,5] had not addressed the issue of the existence of a third radius
component, p; (see criterion 5). One may therefore simplistically argue that the equations for p,
and p, implied by their analysis could satisfy criterion 5. However, in fact, p; does exist as it
follows when equations (N5) and (N6) are examined against criterion 6 from all plausible view-
points (curvature and rotation) concerning the definitions of the radii. In other words, the magni-
tudes of p, and p, as obtained from equations (N5) and (N6) would not in general be adequate
to fully account for the radius of total curvature or rotation. This leads us to the negative finding
that the analysis of Nakayama et al. [4,5] yields an inadmissible system of expressions for p,
and p,.
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It may be also noted that the expressions derived by Nakayama et al. for w, and p, (see equations
(N1) and (N6)) are identical to those derived from the previously validated Hypothesis 3 (see
Egs. (24) and (20b)). However, there are significant differences in the expressions for w,, tané,
p, and p, derived from the two analyses. Comparing equations (N2) to (N5) of Nakayama et al.
with Egs. (25)~(27) and (20a) respectively, it is seen that the differences lie in the locations of
the “cosn” terms. Thus, the analysis of Nakayama et al. [4,5] does yield fairly accurate estimates
of p, when angle 7 is small (i.e. cosm = 1). Further, when the side-curl component is dominant
in a mixed chip (i.e. |6 is large), the magnitude of |n| at point O, (i.e. that of |n,[) can become
very large. In particular, in pure side-curl, |n,| can reach 90°. Hence, it is interesting to examine
the behaviour of Eq. (20a) and (N5) when 7 = § = — 90° and 90°. When one does this it is
found that Eq. (20a) yields the expected infinite magnitude for p, whereas equation (N5) yields
an indeterminate value. Therefore the major weakness of the analysis of Nakayama et al. lies in
the modelling of up-curl radius, p,.

Consider now the plane of up-curl as implied by Hypothesis 3. The hypothesis takes the tool
rake plane to be the plane of side-curl. The component of total curl curvature, k, chosen for the
definition of p, is k, which lies in the plane normal to the rake plane. The corresponding compo-
nent chosen for the definition of p, is k, + Kk, which is inclined at angle 7 to axis X as can be
easily determined from Eq. (18). Hence, k, + K, is normal to the chip velocity V.. In other
words, the plane passing through chip velocity, V., while being orthogonal to the rake plane is
the unique plane which contains «, and is orthogonal to k, + k,. Consequently it this plane
(XvZy), but not plane YZ as assumed in the analysis of Nakayama et al. [4,5], that should be
taken as the plane of up-curl.

The following final picture concerning the mapping between 3-D and 2-D views of chip form
emerges from the above analysis and discussion:

o The central idea of reconstructing the 3-D chip helix in terms of the parameters of two orthog-
onal 2-D views representing up-curl and side-curl respectively is reasonable. However it is not
possible to define the radii of up-curl and side-curl such that they are compatible with their 2-
D definitions and, when applied to 3-D chips, enable the simultaneous reconstruction of the
rotation as well as the curvature of the chip. This is because the angular velocity of total
rotation lies in a plane parallel to plane XZ whereas the vector of total curvature lies in plane
XvZy. Hence a choice needs to be made between the viewpoints of rotation and curvature.
The rotational viewpoint was chosen in [4,5]. The present work shows that the curvature view-
point is the more logical choice.

e In pure side-curl, chip rotation as well as chip curvature occur within the tool rake plane. The
same is true in the case of 3-D chips. Therefore no ambiguities exist with regard to the definition
of side-curl. Hence equation (N6) for p, implied by [4,5] is identical to Eq. (20b) derived in
the present work.

e In pure up-curl, chip rotation as well as curvature occurs in a plane normal to the tool rake
plane. However, two alternative definitions of such a normal plane are plausible: (i) plane XZ
which is normal to the TCSL, or (ii) plane XyZy which is parallel to V.. Nakayama et al. [4,5]
had chosen plane XZ. This choice is acceptable as far as.the reconstruction of the total angular
velocity of rotation of the 3-D chip is concerned since the total angular velocity can indeed
be resolved into two components parallel to planes XY and YZ. However, the choice is not
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acceptable while reconstructing the radius of rotation since there exists a 3rd radius component
orthogonal to p, and p, that remains unaccounted for (see criterion 6 and Hypothesis 2).

No inconsistencies however arise if one chooses the viewpoint of curvature and takes up-curl
to be occurring in the plane XyZy. The only way to completely decompose the total curvature
of a 3-D chip helix into two orthogonal components such that one of these (i.e. side-curl) lies
in a plane parallel to the tool rake plane (i.c. plane YyZy) is to choose the other component
(up-curl) to lie in a plane parallel to plane XyYy. The radii of up-curl and side-curl thus
obtained are able to completely reconstruct the radius of total curvature of the 3-D chip helix.
This unique ability of complete reconstruction is achieved by Hypothesis 3. Therefore, Eq.
(20a) and (20b) derived from Hypothesis 3 represent the most logical choices for estimating
the magnitudes p, and p, corresponding to a given 3-D chip.

6. Conclusions

A basic 3-D analysis of the geometry of chip forms has been developed with a view to determin-

ing the relationship between the geometry of steady-state 3-D helical chips and the 2-D concepts
of pure up-curl and pure side-curl. Six hypotheses have been identified concerning the definitions
of the radii of up-curl and side-curl, i.e. p, and p; respectively. These hypotheses have been tested
against six criteria. The analysis has led to the following conclusions:

1.

The tool-chip separation line must be a straight-line segment when the tool rake face is flat
and the chip is in steady state helical motion as a rigid body after leaving the tool-chip separ-
ation line.

. Hypothesis 3, which has been developed from the viewpoint of chip curvature with specific

reference to the chip velocity direction, is the most logical one to be adopted in relating the
2-D concepts of pure up-curl and pure side-curl to the geometry of 3-D helical forms generally
obtained in practice. Eq. (20a) and (20b) enable the determination of the radii of pure up-
curl and pure side-curl respectively from given magnitudes of parameters 6, p, and 1 of 3-D
helical chips.

. The prevailing notions concerning the estimation of the radii of pure up-curl and side-curl

from 3-D chip forms, which have been pioneered by Nakayama et al. [4,5], lead to some
unsatisfactory results. While their expression for the radius of side-curl is correct, there is
significant error in the expression for the radius of up-curl. The errors associated with the
application of their analysis increase with increasing magnitude of |7
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