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ABSTRACT

The works of Nakayama et al are representative of the prevailing view
regarding how the classical 2D notions of up-curl and side-curl can be related to the
geometry of helical (3D) chips generally obtained in practical machining operations.
Recently, these views were re-examined by the authors and it was realised that the
traditional definition and compounding of these radii is ambiguous. As a result a new
geometric analysis of lightly obstructed chips was developed. The new analysis
revealed that Nakayama’s analysis with regard to up-curl was questionable. This led to
a new equation for up-curl. The present paper summarizes the new analysis and its
implications. It is shown that the entire geometry of the chip-in-process can be
determined from four simple measurements conducted on the chip-in-hand. Finally, a
new map of different chip forms that arise at different combinations of up-curl, side-
curl and chip flow angle is presented.

1. INTRODUCTION

In the analysis of any mechanical phenomenon, the first issues to be addressed
usually relate to the geometry of the problem. If our understanding of the geometry is
inaccurate or incomplete, the subsequent analyses (e.g. force analysis) will be
correspondingly in error.

In view of its importance in facilitating unmanned machining, chip breaking
has emerged as a major field of study in recent years. It has long been recognised that
chips are born curled (although when exactly a chip could be considered to have been
born continues to be fuzzy) and that initially continuous chips usually break owing to
encounters with external obstacles. The nature of these encounters clearly depends
upon the form and path of the chip prior to the encounter. This brings us back to the
question of chip geometry.

Most practical chips are 3-D in nature. However, as with any other aspect of
chip formation, early literature on metal cutting was dominated by 2-D notions. In
particular, two such notions gained widespread recognition: up-curl (of radius p,) and
side-curl (of radius ps). Subsequently, a third parameter called the chip flow angle, n,
was added.

Prevailing notions concerning how one may relate 3-D chip-curl to the 2-D
notions of py, ps, and 1. in the 3-D era are dominated by the views of Nakayama et al.



The first succinct presentation of this view was made in 1974 [2]. The same view was
essentially reaffirmed fourteen years later in 1992 [2], which indicates the durability
of these notions. Nakayama had developed his analysis in the context of cutting tools
with plane rake faces. However, many of the insights derived from his work are
applicable to tools with chip former features (intuitively designed bumps and grooves
on the tool rake face).

Recently, while investigating some methods for controlling chip forms, the
authors had occasion to revisit Nakayama's analysis [1, 2] and found the following
notions underlying Nakayama's work to be very useful:

(1) The tool-chip separation line (TCSL) is assumed to be a straight line.

(i1))  Upon leaving the TCSL, a 3-D continuous chip undergoes rigid body motion
along a circular-helical path.

(iii) The form and path of the chip immediately after leaving the TCSL are
essentially determined by the velocity distribution in the chip at the moment of
its passing over the TCSL.

Observation (i) indicates that the world of chip formation meets the world of
chip form at the TCSL. Hence it should in principle be possible to obtain much insight
into the chip formation process by studying the geometric form of the chip output
from the chip formation zone, i.e. from chips-in-hand. A review of metal cutting
literature shows that only three properties of chips-in-hand have been exploited
hitherto: the thickness, length, and width of the chip. However, there are many other
properties of 3D chips-in-hand (e.g. outer radius py, inner radius p;, pitch p, angle 0
between the chips axis and the rake face, the direction of procesion of the chip, etc.)
that, in principle, could be utilised to gain further insights into the chip formation zone
itself.

Chips-in-hand (i.e. chips that have totally exited from the working zone) can
be classified into two types: (1) lightly obstructed chips, and (i1) strongly obstructed
chips.

Lightly obstructed chips are those that have not undergone significant plastic
deformation after exiting from the TCSL. This occurs when the additional loading
arising from the obstruction, if any, could be accommodated by a corresponding
change in the stress pattern within the chip formation zone (shear zone plus the tool-
chip contact zone).

Strongly obstructed chips occur when the additional loading could not be
accommodated within the chip formation zone and, hence, there is additional plastic
deformation (or, even, breaking) of the chip.

The present paper mainly addresses issues concerning lightly obstructed chips.
In such situations, the geometry of the chip-in-hand directly represents the chip
geometry at the moment the chip had passed over the TCSL.

In order to understand how a chip-in-hand could be utilised to gain insight into
3-D chip formation, the present authors conducted a rigorous analysis of the geometry
of helical chips as they exited from the TCSL [3, 4]. However, rather unexpectedly,
the analysis revealed several inconsistencies in Nakayama's analysis. The most
significant of these related to the fact that Nakayama had taken up-curl to be occurring
in a plane normal to the TCSL as well as the tool rake plane, whereas our analysis
indicated that up-curl should be measured in a plane containing the chip velocity
vector at the TCSL while being normal to the tool rake plane.



The main intention of the present paper is to highlight and resolve the
inconsistencies associated with Nakayama's analysis [1, 2] and broadly discuss some
of the implications of the revised analysis.

Generally, in the analysis of any 3-D object, one either starts from a given set
of 2-D perceptions and tries to obtain the corresponding 3-D perception, or one starts
from the 3-D perception to derive specific 2-D notions. Usually, the 3D perception is
unique whereas it is possible to obtain an infinity of 2-D descriptions corresponding to
the 3-D perception. In other words, the 3D—2D route is of the ‘one-to-many’ type
whereas the 2D—3-D route is of the ‘many-to-one’ type and hence could lead to
ambiguities.

Nakayama’s analysis of chip-curl had followed the 2D—3-D route whereas the
present paper adopts the 3D—2D route.

2. NAKAYAMA'’S 2D—3-D ANALYSIS OF CHIP CURL

Nakayama et al had sought to determine the 3D geometry of a generalized
helical chip by “compounding” the 2D notions of up-curl and side curl. In particular
they sought to expressions several 3D characteristics (such as helix radius p, and pitch
p) in terms of py, ps, and M.

Figure 1b is an adaptation of the illustration used by Nakayama and Arai [2] in
defining the radii of up-curl (p,) and side curl (ps) while machining with a tool with a
plane rake face. In this illustration, axis X is along the TCSL, axis Y is perpendicular
to X while being parallel to the rake plane, and axis Z is perpendicular to both X and
Y (i.e. perpendicular to the rake plane). The origin is set on axis X at the end cutting
edge side of the chip. According to [2], “when the two circular arcs in the Figure 2b
are compounded, the helix in Figure 2a is produced”. The radius of the arc in plane
YZ is then taken as the radius of up-curl, p,, whereas the radius of the arc in plane XY
is taken as the radius of side-curl, ps.

The following characteristics of the pure forms of up-curl and side-curl are
recognized in [1, 2]:

Pure up-curl: The TCSL is parallel to the cutting edge i.e. Ay = 0 where Ay is the
angle between the cutting edge and the TCSL. Hence the plane normal to the TCSL is
identical to that normal to the cutting edge. Tool-chip contact length, /., chip velocity,
V., and p, are uniform along the TCSL The chip axis is parallel to the rake plane, i.e.
0 = 0. Likewise, n = 0 and n. = 0 (note that n. is the conventional chip flow angle
specified with reference to the cutting edge whereas 7 is specified with reference to
the TCSL). The chip geometry is completely determined by considering just the plane
normal to the cutting edge.
Pure side-curl: V. is linearly varying along the TCSL so that Ay # 0 and ps is not
constant along the TCSL. The chip axis is normal to the rake plane, i.e. 0] =90°.
The chip geometry is completely determined by considering just the tool rake plane
(i.e. the plane XY).

Nakayama ef al. [1, 2] considered 3-D chip formation and assumed that plane
YZ is the plane of up-curl and that the projections of velocity V. of the chip particle
on planes YZ and XY respectively match, as instantaneous linear velocities of



rotations, the angular velocities of rotations with respect to up-curl and side-curl.
Thus, interestingly, his analysis of chip curl adopts a rotational viewpoint whereas the
traditional notions of up-curl and side-curl had been notions obtained from a
curvature viewpoint.

Table 1. Equations developed or implied by Nakayama et al. [1, 2]
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N1 See [4]
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Nakayama et al noted that the angular velocity, ®, of the 3-D chip has only two
non-zero components, @y and ®,, perpendicular to planes YZ and XY respectively.
Hence they identified these as the angular velocities of up-curl in plane YZ and side-
curl in plane XY respectively. Thus, the radii of up-curl and side-curl of 3-D chip
were taken to be the radii of rotation in planes YZ and XY respectively. This
procedure led to equations (N1) and (N2) for the rotational velocity components @,
and @y. These expressions were then utilized in relating to 3-D helical chip geometry



to arrive at equations (N3) and (N4) for 0 and p respectively. Note that, although
Nakayama et al [4, 5] had not explicitly stated them, a combination and
rearrangement of equations (N3) and (N4) leads to equations (N5) and (N6) for p, and
ps respectively (see Table 1).

3. ANEW 3D—2D ANALYSIS OF CHIP CURL

We have summarized the chip curl analysis due to Nakayama et al [1, 2] in the
previous section. Note that this analysis had adopted (i) the 2D—3D route (they had
first defined the 2-D notions of up-curl and side-curl and then compounded them to
arrive at a perception of the 3D chip form), and (ii) a rotational viewpoint (see
equations N1 to N3 in Table 1).

In contrast, we will now adopt (i) the 3D—2D route, and (ii) a
curvature viewpoint (since, after all, the classical notions of up-curl and side-curl are
basically notions of curvature and the corresponding rotational viewpoint is only
incidental). It is worth noting that, when the present authors had started on this
3D—2D route, our intention was merely to verify the findings of Nakayama et al from
a different perspective. However, as we will show below, we found (to our surprise)
that Nakayama’s equation N5 for p, is questionable although his equation N6 for py is
correct.

Figure 2 illustrates our geometrical analysis. It is assumed that the tool rake
surface is plane (plane P;). Let OO0, be the tool chip separation line (TCSL). Unlike
Nakayama [1, 2], who had started with the assumption that the TCSL is a straight line,
we will let the TCSL be a plane curve. Let O be an arbitrary point on the TCSL, and
Op and O the end points of the TCSL. The outer surface of the chip (henceforth called
the chip face) can be considered to have been generated by the helical motion of the
TCSL about axis Ay. Points Oy and O, generate circular helices Hy (of radius py) and
H; (of radius p;) respectively. The convention adopted is that py > p;.

We will initially analyze the geometry of the helical chip face with reference to
a right-handed Cartesian system, XYZ, centered at point O. Axis Z is normal to the
rake plane, P;, with the positive direction outward from the tool rake face (as in [1,
2]). Axis Y is normal to the projection, Ay, of the chip helix axis on P,.

V. is the velocity of the chip particle at O in a direction parallel to P, [1]. Let n
be the angle between V. and axis Y. The trajectory of the chip particle starting at point
O is a circular helix, H. Hence V. can be resolved into two orthogonal instantaneous
velocities Vr and Vg: Vris the velocity of translation parallel to the helix axis, Ay,
and Vg is the rotational velocity corresponding to the angular velocity of rotation, ®,
about Ay. A steady state chip implies a TCSL that remains constant in space and time.

Let Oy be the point on Ay such that line OOy is perpendicular to Ay. The
position vector (or the radius vector), p, of the helix generated by point O has a
magnitude equal to distance O»O and is directed along OgO. Let Oy, be the projection
of Oy on P, and e the distance Og,O.

The following equations can now be derived [3]:
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where 0 is angle between Ay and Agy, p is the pitch of helix H, and e is the offset e
measured along the tool rake face between and the TCSL and Ay;.

If it is assumed that the chip is in steady state helical motion as a rigid body
after leaving the TCSL, every helix on the chip must have the same V1 and ® (note
that we have adopted the rotational viewpoint here). Applying the conditions of
constancy of Vr, o, and 0 to equation (3), it follows that the magnitude of ¢ must be
the same for every point on the TCSL. The following are some significant
implications of this simple analytical observation:

(i) The TCSL must be a straight-line segment collinear with axis X. Thus, whereas
Nakayama had assumed the TCSL to be a straight-line segment, we have proved
that it must be so. Further, the only requirement for this observation to be valid is
that the chip should be circular helical. This leads to the following interesting
question: Will the TCSL continue to be straight even when the rake plane contains
some chip formers? (Note that, we often obtain circular helical chips even when
the tool rake plane has chip former features.)

(i1) The straight TCSL must be parallel to the projection of the chip helix axis on the
rake plane.

(111)The distance e between this projection and the TCSL can be calculated by using
equation (3).

(iv) The helical pitch p can be calculated by using equation (2).

Consider now another right handed set of Cartesian axes, Xy, Yy, and Zy
centered at any point on the TCSL such that Yy is directed along V., and Zy is normal
to the rake plane (Zy = Z). The equation for transformation between the co-ordinate
systems XYZ and XyYvZy is available in [3]. Note that the radius vector p of total
curvature at point O lies on the plane XyOZy (yv = 0 at point Og). An expression for
p can be determined in system XYZ by first determining it first in system XvYvyZy (by
applying well-known principles concerning the geometry of a helix) and then
transforming the result expression into the XYZ system. Thus

p = P {- sin0, 0, - cosncosO }x Yz (4a)
\/1-sin’ncos’0 Y
{— cosnsing, sinnsind, - cosncosO }XYZ (4b)
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It is now easy to show that the total curvature, x, of helix H is given by
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Consider now the question of how one could logically define p, and ps in the
context of a generalized (3-D) helical chip. Clearly, any definition set we choose must
be consistent with the classical notions of up-curl and side-curl, i.e. the definitions
should be plausible when applied to the cases of pure up-curl and pure side-curl (see
section 2 for descriptions of these pure states of chip curl).

Following the above arguments, in [3], six equally plausible hypotheses
concerning the definition sets were identified and the corresponding expressions for p,
and ps were derived. Interestingly, it turned out that each of the hypotheses led to a
distinct set of expressions. Thus, it became necessary to find further criteria to
constrain the selection of the generalized definitions of p, and ps. This search led to
the following three additional criteria:

e Criterion 1: |py| = p and |ps| = o when n=0 and 6 = 0 (the case of pure up-curl).

e Criterion 2: |py| = o0 and |ps| = p when 0 = -90° or 90° (the case of pure side-curl).

e Criterion 3: No third radius component, p3, that complements p, and ps should
exist, or, if it exists, then the magnitude of p; should be equal to zero if the
definition is derived from the viewpoint of chip rotation or, if the viewpoint
adopted is one of chip curl, p3 should have infinite magnitude

e Criterion 4: Ifthe hypothesis defines p, and ps from the viewpoint of rotation, then
N pu2 + ps2 must be equal to p. If'the hypothesis defines p, and ps from the

viewpoint of curvature, then /% + LZ must be equal to k (the magnitude of
Pu Py

the total curvature, k, of the chip helix).

When the expressions for p, and ps developed from the six hypothetical
definition sets were then tested against the four criteria described above, it was found
that only one hypothesis had satisfied all the criteria. Hence it was concluded that the
following are the logical definitions p, and ps in the context of the generalized (3D)
helical chip:

e The radius of chip curl, py, is the radius of curvature of the chip helix at the TCSL
in the direction normal to the rake plane, and is given by

1 1

pu = — = = p > > (6)
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e The radius of side-cur, ps, is the radius of the remaining curvature in a direction
parallel to the rake plane, and is given by
o = 1 _ 1 _ p
: \/Ki +K; \/Kiv +ic) sin4/1-sin’ncos>
where Ky, Ky, and ¥, are the curvatures, at point O (i.e. at the TCSL), of the
projections of the chip helix H on planes Y,Z,, Z,Xy, and X,Y respectively.
Note that the above analysis is derived from the viewpoint of chip-curl which
is in contrast to the rotational viewpoint adopted by Nakayama [1, 2]. Therefore, it is

useful to reexamine the new analysis from the view point of chip rotation.
Combining equation 3 with equation 7, it can be shown that

(7)
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Likewise, combining equation 3 with equation 6, it is observed that
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Now we may obtain expressions for 6 and p by suitably combining and
rearranging equations 8 and 9. Thus,
tan0 = o, /o, = (p,cosn)/p, (10)

1-sin’ncos’ @
p= e (11)

2 + 2
(p,cosn)  p,
4. A Critique of Nakayama’s Analysis [1, 2]

With the hindsight provided by the analysis developed in section 3, we are
now in a position to critically review Nakayama’s Analysis [1, 2].

Firstly, Nakayama had arrived at the same equations for pitch p and offset e as
equations 2 and 3 respectively developed in the new analysis.

Secondly, equations 8 and 7 are identical to Nakayama’s equations N1 and N6
respectively (see Table 1). This means that, whatever the arguments for or against the
approach adopted by Nakayama, his analysis had correctly identified the chip’s
rotational velocity (®,) about the axis normal to the rake rake plane and, hence, the
expression for ps. This agreement has been possible because both Nakayama’s
analysis and the analysis presented in section 2 refer to the rake plane (plane XY)
while defining p.

However, the same is not true with Nakayama’s equation for p,. Note that
whereas the cosO term is in the numerator in the right hand side of equation 6, it is in
the denominator in equation N5. Thus, Nakayama’s analysis leads to a greater and
greater error in the estimation of p, as the actual cutting situation deviates more and
more from the state of pure up-curl (recall that 6 = 0 in the state of pure up-curl).

Further, equation N2 of Nakayama’s for the rotational velocity component oy
is not in agreement with equation 9 developed in section 3.

The main problem with Nakayama’s analysis is that, while defining p,, he
chooses the plane YZ that is normal to the TCSL whereas Hypothesis 3 chooses the
plane passing through chip velocity vector V. at the TCSL (both planes are of course
normal to the rake plane and equally plausible in the context of pure up-curl)when
viewed).

Other problems (of lesser consequence) associated with Nakayama’s analysis
have been discussed in [3].

4. EXTENSION OF THE NEW ANALYSIS
TO COVER THE ENTIRE CHIP FACE

The analysis presented in section 3 had focused on the general helix H passing
through point O. That analysis was extended in [4] so as to predict the geometry of the



entire chip face (the screw surface). It was recognized that the chip face could be
modeled of as a collection of helices ranging from Hy (the outer helix) to H; (the inner
helix). The extended analysis was conducted by repositioning the XYZ system to be
centered at point Oy. Further, helix H was located with reference to the outer helix H
by specifying a distance parameter / defined as the linear distance (along the TCSL) of
point O from point Op. This approach led to the following three equations

sinn,+/1- sin’ncos’0
p=p,— (12)

’ sinn\/l -sin’n,cos°0
Isin0,/1-sin’n, cos’ O
cotn = cotn, — \/ - Mo (13)
P, ST,
V, =V, sinn, /sinn (14)
where py, Mo, and Vo are the magnitudes of p, n,, and V, respectively at point at point
Oo.

Equation (13) determines m explicitly for an arbitrary point of the TCSL
specified by a certain value of /. Substituting is value of 1 into equation (11), we can
immediately determine p. Finally, applying equation (13), we can determine V.. Thus,
e once the basic parameter set, (p, M, 0), and V. at any point on the TCSL have been

determined, the corresponding parameters at any other point specified by the
*value of | on the TCSL are automatically determined. Likewise, every helix on
the chip surface is automatically determined once any one of the helices has been
determined.

Note that 1 and 6 can, in principle, take up any value in the range -180° to
+180°. However, a more detailed examination of the chip forms across this full range
shows that they get repeated in different quadrants. Further, since negative up-curl is
rarely found in practice, we may impose the condition that p, cannot be negative at
any point on the chip face. Following these arguments, two major conclusions were
made in [4]:

o The the parameter space (-90° < no < 90° -90° < 6 < 90°) encompasses all
possible chip forms.

o  The maximum permissible magnitude, |No |max, 0f No can be determined as

X |sin9|

2
(i)
[,sin6

According to (14), (15) the parameter space (mo, 0) of the possible chips becomes
increasingly restricted with increasing relative chip width, |l1|/po, along the TCSL

(15)

|n0 . cot

5. CHIP-IN-HAND ANALYSIS

In [4], the analysis presented in section 3 was extended to show that it is
possible to determine every other geometric parameter associated with the chip face
from four easily measurable length dimensions of the chip-in-hand: (i) the outer
radius, po; (i1) the inner radius, p;; (iii) the magnitude of the pitch, |p|; and (iv) the



magnitude of the 'axial width' (the axial displacement between the outer and inner
helices) , |hy|.
The following summarizes the unambiguous procedure developed in [4]:
1. Determine the magnitude of 6 from the measured magnitudes of py, |p| and |h;| by
numerically solving the following equation

ir

| \*
pu (16)
where
o =cos™ 1-kik, (17)

J1-2k k, + k2

(where the cos™ value is evaluated in the range [0, 7/2]) and
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2. From the measured magnitudes of py and [p| and the magnitude of 6 determined in

step 1, calculate the 1o from the following equation

In,| =sin™ ! (20)
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3. Place the chip-in-hand on a horizontal surface, view it from the top, note the
relative configuration of the chip face and the chip underside, and determine the
signs of 0 and n by applying the special chart presented for this purpose in [4].

4. Determine whatever chip geometry parameter you are interested in by substituting
the measured value of py and the signed values of 0 and no in the appropriate
equations developed in sections 3 and 5.

6. ANEW MAP OF CHIP FORMS

One of the major contributions of Nakayama was the pictorial map he had
developed illustrating the different forms of 3-D chips that appear at different
combinations of p, m, and O [2]. This map has been an inspiration for many
subsequent works on chip control.

However, the chip forms illustrated in Nakayama’s map were derived from his
analysis of the generalized (3D) helical chip. Section 4 has shown that this analysis is
questionable and needs to be replaced with the analysis presented in sections 3 and 5
above. Hence, it is necessary to reformulate Nakayama’s map in the light of our new
analysis.

10



Figure ? shows the new map obtained from computer simulations based on the
analyses developed in sections 3 and 5. It may be noted that, unlike Nakayama’s map
which had utilized three axes—one each for p, n, and 6, the new map utilizes only
two axes—one for 1 as in Nakayama’s map, and one for the parameter tan™'(pu/ps)
characterizing the curl-ratio p,/ps. This simplification has been prompted by the
following notions:

(1) We need to be able to represent the specific helical form of the chip face. This
form mainly depends on the curl ratio p,/ps (but not the absolute magnitudes
of each of the curl components) and n. The curl ratio however is more
elegantly characterized by using the term tan™'(pu/ps) that avoids the problem
arising when either p, or p, reaches infinity.

(i)  We also need to capture the orientation of the chip relative to the tool rake
surface. This orientation depends mainly on 6 and n. However, we know

ﬁztm'l(&cosn) Hence, the effect of 6 has already been implicitly

Ps
captured by choosing the curl-ratio and n as the axes of our map.

CONCLUSION

A recent new analysis [3, 4] of the geometry of helical chips obtained in
cutting with plane rake faced tools has been summarized.

In stark contrast to Nakayama's analysis [1, 2], which had attempted a 2D—3D
analysis based on notions of chip rotation, the new analysis has adopted a 3D—2D
approach based on notions of chip-curl while being consistent with the corresponding
notions of chip rotation.

In contrast to Nakayama who had assumed that the tool-chip separation line is
straight, the new analysis has proved this to be true.

The new analysis has led to equations 6 and 7 for determining the up-curl radii
and side-curl radii from a given set of basic parameters related to the generalized (3D)
helical chip. It is seen that, while equation 7 agrees with the corresponding equation
developed by Nakayama for the side-curl radius, equation 6 differs significantly from
equation N5 arrived at by Nakayama. The reason for this disagreement lies in the
manner Nakayama had formulated the rotational motion associated with up-curl.
Amongst the infinity of planes normal to the tool rake face, Nakayama had chosen the
plane normal to the TCSL for defining up-curl. The new analysis has shown that this
choice leads to results in disagreement with the total curvature of chip helix. The
correct choice of the plane is the plane containing the chip velocity vector V..

The new analysis has demonstrated that every basic parameter concerning
every helix on the chip face is fully determined once the basic parameter set
associated with one of the helices is known.

A practical benefit accorded by the new analysis is a new method for using the
chip-in-hand to gain insights into the chip-in-process (at least in the case of lightly
obstructed chips) and hence, possibly, into the chip formation process itself. In
particular, it has been shown that every geometric parameter of interest associated
with the face of the chip-in-process can be derived solely from four simple
measurements conducted on the chip-in-hand. This finding is significant because these
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four parameters are in addition to the traditionally utilized measurements of chip
length, thickness, and width to obtain insight into the chip formation process.

One aspect of Nakayama’s work that has inspired many subsequent workers is
the map of chip forms developed by him in terms of the radius of up-curl, radius of
side-curl, and the chip flow angle specified with reference to the TCSL. However, the
details of this map need now to be corrected following the discovery of errors in his
formulation of up-curl. Figure ? shows the modified (and much simpler)
mapdeveloped following the new geometric analysis of the generalized helical chip.

One limitation of the new analysis is that it is applicable to lightly obstructed
chips where a significant proportion of practical chips are strongly obstructed (i.e
chips that have undergone significant plastic deformation, owing to encounters with
external obstacles, after passing over the TCSL. Further reserach is required to extend
the new analysis summarized in this paper to the case of strongly obstructed chips.
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