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ABSTRACT 

 

 The works of Nakayama et al are representative of the prevailing view 

regarding how the classical 2D notions of up-curl and side-curl can be related to the 

geometry of helical (3D) chips generally obtained in practical machining operations. 

Recently, these views were re-examined by the authors and it was realised that the 

traditional definition and compounding of these radii is ambiguous. As a result a new 

geometric analysis of lightly obstructed chips was developed. The new analysis 

revealed that Nakayama’s analysis with regard to up-curl was questionable. This led to 

a new equation for up-curl. The present paper summarizes the new analysis and its 

implications. It is shown that the entire geometry of the chip-in-process can be 

determined from four simple measurements conducted on the chip-in-hand. Finally, a 

new map of different chip forms that arise at different combinations of up-curl, side-

curl and chip flow angle is presented. 

 

 

1. INTRODUCTION 

 

 In the analysis of any mechanical phenomenon, the first issues to be addressed 

usually relate to the geometry of the problem. If our understanding of the geometry is 

inaccurate or incomplete, the subsequent analyses (e.g. force analysis) will be 

correspondingly in error. 

 In view of its importance in facilitating unmanned machining, chip breaking 

has emerged as a major field of study in recent years. It has long been recognised that 

chips are born curled (although when exactly a chip could be considered to have been 

born continues to be fuzzy) and that initially continuous chips usually break owing to 

encounters with external obstacles. The nature of these encounters clearly depends 

upon the form and path of the chip prior to the encounter. This brings us back to the 

question of chip geometry. 

 Most practical chips are 3-D in nature. However, as with any other aspect of 

chip formation, early literature on metal cutting was dominated by 2-D notions. In 

particular, two such notions gained widespread recognition: up-curl (of radius u) and 

side-curl (of radius s). Subsequently, a third parameter called the chip flow angle, c, 

was added.  

 Prevailing notions concerning how one may relate 3-D chip-curl to the 2-D 

notions of u, s, and c in the 3-D era are dominated by the views of Nakayama et al. 
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The first succinct presentation of this view was made in 1974 [2]. The same view was 

essentially reaffirmed fourteen years later in 1992 [2], which indicates the durability 

of these notions. Nakayama had developed his analysis in the context of cutting tools 

with plane rake faces. However, many of the insights derived from his work are 

applicable to tools with chip former features (intuitively designed bumps and grooves 

on the tool rake face). 

 Recently, while investigating some methods for controlling chip forms, the 

authors had occasion to revisit Nakayama's analysis [1, 2] and found the following 

notions underlying Nakayama's work to be very useful: 

(i) The tool-chip separation line (TCSL) is assumed to be a straight line. 

(ii) Upon leaving the TCSL, a 3-D continuous chip undergoes rigid body motion 

along a circular-helical path. 

(iii) The form and path of the chip immediately after leaving the TCSL are 

essentially determined by the velocity distribution in the chip at the moment of 

its passing over the TCSL. 

Observation (i) indicates that the world of chip formation meets the world of  

chip form at the TCSL. Hence it should in principle be possible to obtain much insight 

into the chip formation process by studying the geometric form of the chip output 

from the chip formation zone, i.e. from chips-in-hand. A review of metal cutting 

literature shows that only three properties of chips-in-hand have been exploited 

hitherto: the thickness, length, and width of the chip. However, there are many other 

properties of 3D chips-in-hand (e.g. outer radius 0, inner radius 1, pitch p, angle  

between the chips axis and the rake face, the direction of procesion of the chip, etc.) 

that, in principle, could be utilised to gain further insights into the chip formation zone 

itself.  

Chips-in-hand (i.e. chips that have totally exited from the working zone) can 

be classified into two types: (i) lightly obstructed chips, and (ii) strongly obstructed 

chips.  

Lightly obstructed chips are those that have not undergone significant plastic 

deformation after exiting from the TCSL. This occurs when the additional loading 

arising from the obstruction, if any, could be accommodated by a corresponding 

change in the stress pattern within the chip formation zone (shear zone plus the tool-

chip contact zone).  

Strongly obstructed chips occur when the additional loading could not be 

accommodated within the chip formation zone and, hence, there is additional plastic 

deformation (or, even, breaking) of the chip.  

 The present paper mainly addresses issues concerning lightly obstructed chips. 

In such situations, the geometry of the chip-in-hand directly represents the chip 

geometry at the moment the chip had passed over the TCSL.  

In order to understand how a chip-in-hand could be utilised to gain insight into 

3-D chip formation, the present authors conducted a rigorous analysis of the geometry 

of helical chips as they exited from the TCSL [3, 4]. However, rather unexpectedly, 

the analysis revealed several inconsistencies in Nakayama's analysis. The most 

significant of these related to the fact that Nakayama had taken up-curl to be occurring 

in a plane normal to the TCSL as well as the tool rake plane, whereas our analysis 

indicated that up-curl should be measured in a plane containing the chip velocity 

vector at the TCSL while being normal to the tool rake plane.  
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The main intention of the present paper is to highlight and resolve the 

inconsistencies associated with Nakayama's analysis [1, 2] and broadly discuss some 

of the implications of the revised analysis.   

 Generally, in the analysis of any 3-D object, one either starts from a given set 

of 2-D perceptions and tries to obtain the corresponding 3-D perception, or one starts 

from the 3-D perception to derive specific 2-D notions. Usually, the 3D perception is 

unique whereas it is possible to obtain an infinity of 2-D descriptions corresponding to 

the 3-D perception. In other words, the 3D2D route is of the ‘one-to-many’ type  

whereas the 2D3-D route is of the ‘many-to-one’ type and hence could lead to 

ambiguities.  

 Nakayama’s analysis of chip-curl had followed the 2D3-D route whereas the 

present paper adopts the 3D2D route. 

 

 

2. NAKAYAMA’S 2D3-D ANALYSIS OF CHIP CURL  

  

 Nakayama et al had sought to determine the 3D geometry of a generalized 

helical chip by “compounding” the 2D notions of up-curl and side curl. In particular 

they sought to expressions several 3D characteristics (such as helix radius , and pitch 

p) in terms of u, s, and .   

 Figure 1b is an adaptation of the illustration used by Nakayama and Arai [2] in 

defining the radii of up-curl (u) and side curl (s) while machining with a tool with a 

plane rake face. In this illustration, axis X is along the TCSL, axis Y is perpendicular 

to X while being parallel to the rake plane, and axis Z is perpendicular to both X and 

Y (i.e. perpendicular to the rake plane). The origin is set on axis X at the end cutting 

edge side of the chip. According to [2], “when the two circular arcs in the Figure 2b 

are compounded, the helix in Figure 2a is produced”. The radius of the arc in plane 

YZ is then taken as the radius of up-curl, u, whereas the radius of the arc in plane XY 

is taken as the radius of side-curl, s. 

 The following characteristics of the pure forms of up-curl and side-curl are 

recognized in [1, 2]: 

Pure up-curl: The TCSL is parallel to the cutting edge i.e.  = 0 where  is the 

angle between the cutting edge and the TCSL. Hence the plane normal to the TCSL is 

identical to that normal to the cutting edge. Tool-chip contact length, lc, chip velocity, 

Vc, and u are uniform along the TCSL The chip axis is parallel to the rake plane, i.e. 

 = 0. Likewise,  = 0 and c = 0 (note that c is the conventional chip flow angle 

specified with reference to the cutting edge whereas is specified with reference to 

the TCSL). The chip geometry is completely determined by considering just the plane 

normal to the cutting edge. 

Pure side-curl: Vc is linearly varying along the TCSL so that   0 and s is not 

constant along the TCSL. The chip axis is normal to the rake plane, i.e.  = 90
o
. 

The chip geometry is completely determined by considering just the tool rake plane 

(i.e. the plane XY).  

 Nakayama et al. [1, 2] considered 3-D chip formation and assumed that plane 

YZ is the plane of up-curl and that the projections of velocity Vc of the chip particle 

on planes YZ and XY respectively match, as instantaneous linear velocities of 
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rotations, the angular velocities of rotations with respect to up-curl and side-curl. 

Thus, interestingly, his analysis of chip curl adopts a rotational viewpoint whereas the 

traditional notions of up-curl and side-curl had been notions obtained from a 

curvature viewpoint. 

 

Table 1.  Equations developed or implied by Nakayama et al. [1, 2] 

 

Eq. No. Note Equation 

N1 See [4] 

 z c s =  V /
 

N2 See [4] 

  x c u =  (V cos ) /
 

N3 See [5] 

tan / / ( cos )      =   =  z x u s  

N4 See [5] 


 

  
 =  

1 - sin

 (1 /

2

u s

cos

(cos / ) )

2

2 2  

N5 By combining  

N3 and N4 


 

  
u

2 2cos 1- sin cos


cos

 

N6 By combining  

N3 and N4 




  
s

2 21- sin cos


sin  

 

 Nakayama et al noted that the angular velocity, , of the 3-D chip has only two 

non-zero components, x and z, perpendicular to planes YZ and XY respectively. 

Hence they identified these as the angular velocities of up-curl in plane YZ and side-

curl in plane XY respectively. Thus, the radii of up-curl and side-curl of 3-D chip 

were taken to be the radii of rotation in planes YZ and XY respectively. This 

procedure led to equations (N1) and (N2) for the rotational velocity components z 

and x. These expressions were then utilized in relating to 3-D helical chip geometry 
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to arrive at equations (N3) and (N4) for  and  respectively. Note that, although 

Nakayama et al. [4, 5] had not explicitly stated them, a combination and 

rearrangement of equations (N3) and (N4) leads to equations (N5) and (N6) for u and 

s respectively (see Table 1). 

 

3. A NEW 3D2D ANALYSIS OF CHIP CURL 

 

 We have summarized the chip curl analysis due to Nakayama et al [1, 2] in the 

previous section. Note that this analysis had adopted (i) the 2D3D route (they had 

first defined the 2-D notions of up-curl and side-curl and then compounded them to 

arrive at a perception of the 3D chip form), and (ii) a rotational viewpoint (see 

equations N1 to N3 in Table 1).  

 In contrast, we will now adopt (i) the 3D2D route, and (ii) a 

curvature viewpoint (since, after all, the classical notions of up-curl and side-curl are 

basically notions of curvature and the corresponding rotational viewpoint is only 

incidental). It is worth noting that, when the present authors had started on this 

3D2D route, our intention was merely to verify the findings of Nakayama et al from 

a different perspective. However, as we will show below, we found (to our surprise) 

that Nakayama’s equation N5 for u is questionable although his equation N6 for s is 

correct.  

Figure 2 illustrates our geometrical analysis. It is assumed that the tool rake 

surface is plane (plane Pr). Let O0OO1 be the tool chip separation line (TCSL). Unlike 

Nakayama [1, 2], who had started with the assumption that the TCSL is a straight line, 

we will let the TCSL be a plane curve. Let O be an arbitrary point on the TCSL, and 

O0 and O1 the end points of the TCSL. The outer surface of the chip (henceforth called 

the chip face) can be considered to have been generated by the helical motion of the 

TCSL about axis AH. Points O0 and O1 generate circular helices H0 (of radius 0) and 

H1 (of radius 1) respectively. The convention adopted is that 0   1.  

We will initially analyze the geometry of the helical chip face with reference to 

a right-handed Cartesian system, XYZ, centered at point O. Axis Z is normal to the 

rake plane, Pr, with the positive direction outward from the tool rake face (as in [1, 

2]). Axis Y is normal to the projection, AHr, of the chip helix axis on Pr.  

Vc is the velocity of the chip particle at O in a direction parallel to Pr [1]. Let  

be the angle between Vc and axis Y. The trajectory of the chip particle starting at point 

O is a circular helix, H. Hence Vc can be resolved into two orthogonal instantaneous 

velocities VT and VR: VT is the velocity of translation parallel to the helix axis, AH , 

and VR is the rotational velocity corresponding to the angular velocity of rotation, , 

about AH. A steady state chip implies a TCSL that remains constant in space and time.  

Let OH be the point on AH such that line OOH is perpendicular to AH. The 

position vector (or the radius vector), , of the helix generated by point O has a 

magnitude equal to distance OHO and is directed along OHO. Let OHr be the projection 

of OH on Pr and e the distance OHrO. 

The following equations can now be derived [3]: 
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 =  
V - sin cos  

cos    0  -c

2 2

XYZ

1  


 { , sin },                                                         (1) 

 
cossin - 1

cossin2
)V/(2 = p

22
T




                     (2) 

e =   =  
sin

1 -  sin cos

V tan
y

2 2

T
  

 





sin
 =                   (3) 

where  is angle between AH and AHr, p is the pitch of helix H, and e is the offset e 

measured along the tool rake face between and the TCSL and AHr. 

 If it is assumed that the chip is in steady state helical motion as a rigid body 

after leaving the TCSL, every helix on the chip must have the same VT and  (note 

that we have adopted the rotational viewpoint here). Applying the conditions of 

constancy of VT, , and  to equation (3), it follows that the magnitude of e must be 

the same for every point on the TCSL. The following are some significant 

implications of this simple analytical observation:  

(i) The TCSL must be a straight-line segment collinear with axis X. Thus, whereas 

Nakayama had assumed the TCSL to be a straight-line segment, we have proved 

that it must be so. Further, the only requirement for this observation to be valid is 

that the chip should be circular helical. This leads to the following interesting 

question: Will the TCSL continue to be straight even when the rake plane contains 

some chip formers? (Note that, we often obtain circular helical chips even when 

the tool rake plane has chip former features.) 

(ii) The straight TCSL must be parallel to the projection of the chip helix axis on the 

rake plane.  

(iii)The distance e between this projection and the TCSL can be calculated by using 

equation (3). 

(iv)  The helical pitch p can be calculated by using equation (2). 

 Consider now another right handed set of Cartesian axes, XV, YV, and ZV 

centered at any point on the TCSL such that YV is directed along Vc, and ZV is normal 

to the rake plane (ZV  Z). The equation for transformation between the co-ordinate 

systems XYZ and XVYVZV is available in [3]. Note that the radius vector  of total 

curvature at point O lies on the plane XVOZV (yV = 0 at point OH). An expression for 

 can be determined in system XYZ by first determining it first in system XVYVZV (by 

applying well-known principles concerning the geometry of a helix) and then 

transforming the result expression into the XYZ system. Thus 

   
vvv ZYX

22
 coscos- 0, ,sin- 

cossin-1
= 




     (4a) 

 

 XYZ
22

 coscos- ,sinsin ,sincos- 
cossin-1

=   



              (4b) 

 

 It is now easy to show that the total curvature, , of helix H is given by  
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
 


  

- sin1 2 2cos
           (5) 

 Consider now the question of how one could logically define u and s in the 

context of a generalized (3-D) helical chip. Clearly, any definition set we choose must  

be consistent with the classical notions of up-curl and side-curl, i.e. the definitions 

should be plausible when applied to the cases of pure up-curl and pure side-curl (see  

section 2 for descriptions of these pure states of chip curl).  

 Following the above arguments, in [3], six equally plausible hypotheses 

concerning the definition sets were identified and the corresponding expressions for u 

and s were derived. Interestingly, it turned out that each of the hypotheses led to a 

distinct set of expressions. Thus, it became necessary to find further criteria to 

constrain the selection of the generalized definitions of u and s. This search led to 

the following three additional criteria: 

 Criterion 1:  u =  and s =  when =0 and  = 0 (the case of pure up-curl). 

 Criterion 2: u =  and s =  when  = -90
o
 or 90

o
 (the case of pure side-curl).  

 Criterion 3: No third radius component, 3, that complements u and s should 

exist, or, if it exists, then the magnitude of 3 should be equal to zero if the 

definition is derived from the viewpoint of chip rotation or, if the viewpoint 

adopted is one of chip curl, 3 should have infinite magnitude 

 Criterion 4: If the hypothesis defines u and s from the viewpoint of rotation, then 

 u s

2 2
  must be equal to . If the hypothesis defines u and s from the 

viewpoint of curvature, then  
1 1

u s 
2 2
  must be equal to  (the magnitude of 

the total curvature, , of the chip helix). 

 When the expressions for u and s developed from the six hypothetical 

definition sets were then tested against the four criteria described above, it was found 

that only one hypothesis had satisfied all the criteria. Hence it was concluded that the 

following are the logical definitions u and s in the context of the generalized (3D) 

helical chip:  

 The radius of chip curl, u, is the radius of curvature of the chip helix at the TCSL 

in the direction normal to the rake plane, and is given by 


 



   
u

z z
2

1
=

1

cos cos 1- sin
   

V cos2
                (6).  

 The radius of side-cur, s, is the radius of the remaining curvature in a direction 

parallel to the rake plane, and is given by 

 
   



  
s

x y x y

2
 

1
=

1
=

sin 1- sin
  

 2 2 2 2 2

V V
cos

               (7) 

where x, y, and z, are the curvatures, at point O (i.e. at the TCSL), of the 

projections of the chip helix H on planes YvZv, ZvXv, and XvYv respectively. 

 Note that the above analysis is derived from the viewpoint of chip-curl which 

is in contrast to the rotational viewpoint adopted by Nakayama [1, 2]. Therefore, it is 

useful  to reexamine the new analysis from the view point of chip rotation.  

 Combining equation 3 with equation 7, it can be shown that 
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


z
c

s

V
                      (8) 

 Likewise, combining equation 3 with equation 6, it is observed that 


 

x
c

u

V

cos
                      (9) 

 Now we may obtain expressions for  and  by suitably combining and 

rearranging equations 8 and 9. Thus, 

tan / cos ) /      =   =  (z x u s                  (10) 

  2

s

2

u

22

1

cos

1

cossin-1
 = 








                  (11) 

 

 4. A Critique of Nakayama’s Analysis [1, 2] 

 

 With the hindsight provided by the analysis developed in section 3, we are 

now in a position to critically review Nakayama’s Analysis [1, 2]. 

 Firstly, Nakayama had arrived at the same equations for pitch p and offset e as 

equations 2 and 3 respectively developed in the new analysis.  

Secondly, equations 8 and 7 are identical to Nakayama’s equations N1 and N6 

respectively (see Table 1). This means that, whatever the arguments for or against the 

approach adopted by Nakayama, his analysis had correctly identified the chip’s 

rotational velocity (z) about the axis normal to the rake rake plane and, hence, the 

expression for s. This agreement has been possible because both Nakayama’s 

analysis and the analysis presented in section 2 refer to the rake plane (plane XY) 

while defining s.  

 However, the same is not true with Nakayama’s equation for u. Note that 

whereas the cos term is in the numerator in the right hand side of equation 6, it  is in 

the denominator in equation N5. Thus, Nakayama’s analysis leads to a greater and 

greater error in the estimation of u as the actual cutting situation deviates more and 

more from the state of pure up-curl (recall that  = 0 in the state of pure up-curl). 

 Further, equation N2 of Nakayama’s for the rotational velocity component x 

is not in agreement with equation 9 developed in section 3.  

 The main problem with Nakayama’s analysis is that, while defining u, he 

chooses the plane YZ that is normal to the TCSL whereas Hypothesis 3 chooses the 

plane passing through chip velocity vector Vc at the TCSL (both planes are of course 

normal to the rake plane and equally plausible in the context of pure up-curl)when 

viewed).    

 Other problems (of lesser consequence) associated with Nakayama’s analysis 

have been discussed in [3].   

 

 

4. EXTENSION OF THE NEW ANALYSIS  

TO COVER THE ENTIRE CHIP FACE 

 

 The analysis presented in section 3 had focused on the general helix H passing 

through point O. That analysis was extended in [4] so as to predict the geometry of the 
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entire chip face (the screw surface). It was recognized that the chip face could be 

modeled of as a collection of helices ranging from H0 (the outer helix) to H1 (the inner 

helix). The extended analysis was conducted by repositioning the XYZ system to be 

centered at point O0.  Further, helix H was located with reference to the outer helix H0 

by specifying a distance parameter l defined as the linear distance (along the TCSL) of 

point O from point O0. This approach led to the following three equations  

  

 
  

  
 0

0

0

sin 1- sin cos

sin 1- sin cos

2 2

2 2
                       (12) 

cot
sin 1- sin2

 
  

 
 cot

cos

sin
0

0

2

0 0

l
               (13) 

V = Vc c0 sin / sin 0                              (14) 

where 0, 0, and Vc0 are the magnitudes of , ,, and Vc respectively at point at point 

O0.  

 Equation (13) determines  explicitly for an arbitrary point of the TCSL 

specified by a certain value of l. Substituting is value of  into equation (11), we can 

immediately determine . Finally, applying equation (13), we can determine Vc. Thus, 

 once the basic parameter set, (, , ), and Vc at any point on the TCSL have been 

determined, the corresponding parameters at any other point specified by the 

*value of l on the TCSL are automatically determined. Likewise, every helix on 

the chip surface is automatically determined once any one of the helices has been 

determined. 

 Note that 0 and  can, in principle, take up any value in the range -180
o
 to 

+180
o
. However, a more detailed examination of the chip forms across this full range 

shows that they get repeated in different quadrants. Further, since negative up-curl is 

rarely found in practice, we may impose the condition that u cannot be negative at 

any point on the chip face. Following these arguments, two major conclusions were 

made in [4]: 

 The the parameter space (-90
o
  0  90

o
, -90

o
    90

o
) encompasses all 

possible chip forms.  

 The maximum permissible magnitude, 0 max, of 0 can be determined as 

       








0 max

sin

sin











 

cot 1

0

1

2

1
l

                 (15) 

According to (14), (15) the parameter space (0, ) of the possible chips becomes 

increasingly restricted with increasing relative chip width, |l1|/0, along the TCSL 

 

 

5. CHIP-IN-HAND ANALYSIS 

 

In [4], the analysis presented in section 3 was extended to show that it is 

possible to determine every other geometric parameter associated with the chip face 

from four easily measurable length dimensions of the chip-in-hand: (i) the outer 

radius, 0; (ii) the inner radius, 1; (iii) the magnitude of the pitch, p; and (iv) the 
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magnitude of the 'axial width' (the axial displacement between the outer and inner 

helices) ,  h1.  

 The following summarizes the unambiguous procedure developed in [4]: 

1. Determine the magnitude of  from the measured magnitudes of 0, p and h1 by 

numerically solving the following equation 

k h
p

1 1 








 

tan





0 2
0
                 (16) 

where 

 


 

cos 1 1

1 2

k k

k k k

1 2

1 2 1

2
                 (17) 

(where the cos
-1

 value is evaluated in the range [0, /2]) and 

k k
ptan

2
1 2

0

 








 



















1

0

2 2

                 (18) 

where 

 

k
ptan

2
2

0

 








1

2




                  (19) 

2. From the measured magnitudes of 0 and p and the magnitude of  determined in 

step 1, calculate the 0 from the following equation   
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-1sin
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
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1
2 0

2
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                 (20) 

3. Place the chip-in-hand on a horizontal surface, view it from the top, note the 

relative configuration of the chip face and the chip underside, and determine the 

signs of  and 0 by applying the special chart presented for this purpose in [4]. 

4. Determine whatever chip geometry parameter you are interested in by substituting 

the measured value of 0 and the signed values of  and 0 in the appropriate 

equations developed in sections 3 and 5. 

 

 

6. A NEW MAP OF CHIP FORMS  

 

One of the major contributions of Nakayama was the pictorial map he had 

developed illustrating the different forms of 3-D chips that appear at different 

combinations of , , and  [2]. This map has been an inspiration for many 

subsequent works on chip control.  

However, the chip forms illustrated in Nakayama’s map were derived from his 

analysis of the generalized (3D) helical chip. Section 4 has shown that this analysis is 

questionable and needs to be replaced with the analysis presented in sections 3 and 5 

above. Hence, it is necessary to reformulate Nakayama’s map in the light of our new 

analysis. 
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Figure ? shows the new map obtained from computer simulations based on the 

analyses developed in sections 3 and 5. It may be noted that, unlike Nakayama’s map 

which had utilized three axesone each for , , and , the new map utilizes only 

two axesone for  as in Nakayama’s map, and one for the parameter tan
-1

(u/s) 

characterizing the curl-ratio u/s. This simplification has been prompted by the 

following notions: 

(i) We need to be able to represent the specific helical form of the chip face. This 

form mainly depends on the curl ratio u/s (but not the absolute magnitudes 

of each of the curl components) and . The curl ratio however is more 

elegantly characterized by using the term tan
-1

(u/s) that avoids the problem 

arising when either u or s reaches infinity.  

(ii) We also need to capture the orientation of the chip relative to the tool rake 

surface. This orientation depends mainly on  and . However, we know 











 




 costan

s

u1- . Hence, the effect of  has already been implicitly 

captured by choosing the curl-ratio and  as the axes of our map.  

 

 

 

CONCLUSION 

 

 A recent new analysis [3, 4] of the geometry of helical chips obtained in  

cutting with plane rake faced tools has been summarized.  

 In stark contrast to Nakayama's analysis [1, 2], which had attempted a 2D3D 

analysis based on notions of chip rotation, the new analysis has adopted a 3D2D 

approach based on notions of chip-curl while being consistent with the corresponding 

notions of chip rotation.  

 In contrast to Nakayama who had assumed that the tool-chip separation line is 

straight, the new analysis has proved this to be true. 

 The new analysis has led to equations 6 and 7 for determining the up-curl radii 

and side-curl radii from a given set of basic parameters related to the generalized (3D) 

helical chip. It is seen that, while equation 7 agrees with the corresponding equation 

developed by Nakayama for the side-curl radius, equation 6 differs significantly from 

equation N5 arrived at by Nakayama. The reason for this disagreement lies in the 

manner Nakayama had formulated the rotational motion associated with up-curl. 

Amongst the infinity of planes normal to the tool rake face, Nakayama had chosen the 

plane normal to the TCSL for defining up-curl. The new analysis has shown that this 

choice leads to results in disagreement with the total curvature of chip helix. The 

correct choice of the plane is the plane containing the chip velocity vector Vc.     

 The new analysis has demonstrated that every basic parameter concerning 

every helix on the chip face is fully determined once the basic parameter set 

associated with one of the helices is known.  

 A practical benefit accorded by the new analysis is a new method for using the 

chip-in-hand to gain insights into the chip-in-process (at least in the case of lightly 

obstructed chips) and hence, possibly, into the chip formation process itself. In 

particular, it has been shown that every geometric parameter of interest associated 

with the face of the chip-in-process can be derived solely from four simple 

measurements conducted on the chip-in-hand. This finding is significant because these 
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four parameters are in addition to the traditionally utilized measurements of chip 

length, thickness, and width to obtain insight into the chip formation process. 

 One aspect of Nakayama’s work that has inspired many subsequent workers is 

the map of chip forms developed by him in terms of the radius of up-curl, radius of 

side-curl, and the chip flow angle specified with reference to the TCSL. However, the 

details of this map need now to be corrected following the discovery of errors in his 

formulation of up-curl. Figure ? shows the modified (and much simpler) 

mapdeveloped following the new geometric analysis of the generalized helical chip. 

 One limitation of the new analysis is that it is applicable to lightly obstructed 

chips where a significant proportion of practical chips are strongly obstructed (i.e 

chips that have undergone significant plastic deformation, owing to encounters with 

external obstacles, after passing over the TCSL. Further reserach is required to extend 

the new analysis summarized in this paper to the case of strongly obstructed chips.    
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