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ABSTRACT

The relative force prediction abilities of some well-known ANN-based, empirical and
analytical models are assessed against several independent datasets by taking the rms
error of cutting and thrust forces over all the datasets as the criterion. Progressing beyond
mere data analysis, attention is paid to issues concerning how the model parameters
themselves could be numerically modeled. A methodology for avoiding the need for
measuring the shear angle, @, is also developed. Model coefficients are estimated through
nonlinear constrained optimization techniques. For estimating ¢, the fractional variation
of an idealized material invariant such as the mean shear stress, 7, on the shear plane is
minimized subject to Hill’s classical constraints. Several hitherto unknown insights
regarding the relative effectiveness of each of the models have emerged. For example, it
is found that the ¢-values estimated from the measured forces alone are superior to those
determined from chip measurements in the traditional manner.

NOTATION
a the first constant in LinSAS, deg.
chip load (cut area), m*
A, area of shear plane, m’
(ARFPE); Aggregate Relative Force Prediction Effectiveness of model /
b the second constant in LinSAS



e; rms force prediction error of model i over dataset j, N
ejji rms force prediction error of model i for record k of dataset j, N
ELinSAS  Extended Linear Shear Angle Solution: LinSAS but with a

and b expressed as Powerfuns

fo, fr total cutting and thrust force respectively acting on the tool, N

Jeers frer clearance face cutting and thrust force respectively, N

Jors fry rake face cutting and thrust force respectively, N

Jaies frik measured cutting and thrust force respectively in record k of dataset
7 N

Scijkpr» fripr predictions by model i of f¢ and frcorresponding to f and f7
respectively, N

Fy clearance face friction force, N

F, rake face friction force, N

F; shear plane shearing force, N

i model index
j dataset index

k data record index within a given dataset

K, magnitude of N, for unit v;, N/m’

K,/ magnitude of N,,for unit 4, N/m’

LFPT Linear Force Partitioning Technique

LinSAS Linear Shear Angle Solution of the form ¢ = a — b(f-7)
Ny, number of models available, i.e., the maximum value of /
Ny number of datasets available, i.e., the maximum value of j
My number of records in dataset j

MVMI Minimizing the Variation of the Material Invariant in the given

model

Ny clearance face normal force, N

N magnitude of N, per unit w,, N/m

Ny rake face normal force, N

N, shear plane normal force, N

0 objective function

OFPT Optimized Force Partitioning Technique

p penetration of a dull cutting edge into the work surface, m
PowerFun Power Function

7o tool cutting edge radius, m

rms root mean square

(RFPE);  Relative Force Prediction Effectiveness of model i over dataset j
s uniform shear stress on lower boundary of shear zone, Pa
Spp value of s stored in model coefficient database, Pa

t cut thickness, m

UolFun University of Illinois Function

Vi clearance face interference volume, m’

14 relative velocity between tool and workpiece, m/min

W cut width, m

p rake face (tool-chip interface) friction angle, deg.



1% tool rake angle, deg

n cutting effectiveness (= ratio of minimum and actual cutting

energies under identical cutting conditions)
@ shear angle, deg.
Bk Pusik  lower and upper limits respectively on ¢ for record & of dataset j
Om shear angle determined from measured chip dimensions, deg.
Hof, Lt coefficient of friction at clearance face and rake face respectively
0 = f-7, deg.
T mean shear stress on shear plane, Pa
o value of 7stored in model coefficient database, Pa
& a machining parameter (= z4./fc)

INTRODUCTION

The current practice of relying on machining databases (e.g., [1]) for the
purpose of anticipating process outputs such as cutting forces, temperatures, and
tool life is highly unsatisfactory. A recurring theme at the CIRP-sponsored
International Workshops on Modeling of Machining Operations being held since
1997 concerns the urgent need for reliable and robust predictive models of
practical cutting operations so as to avoid the need for very large machining
databases. As a result, industrial and academic communities have collaborated
through a project coordinated by the National Institute for Standards and
Technology (NIST) of the USA so as ‘to assess the ability of state-of-the-art
machining models to make accurate predictions of the behavior of practical
machining operations based upon the knowledge of machining parameters
typically available on a modern industrial shop floor [2].” There have also been
suggestions to develop a ‘House of Models’ consisting of models that are
declared by CIRP to be ‘fit to use’ in the metal cutting industry [3]’.

However, predictive modeling is not easy because machining processes
continue to be poorly understood owing to the following reasons: the large
variety of processes, input variables, internal variables, and output variables; the
resulting large variety of chip types and forms; the high complexity of tool/work
interface; the difficulty of determining work material properties at the extreme
conditions prevailing in the cutting zone; the small scale of machining; and the
fact that the process of chip formation is not uniquely defined [4].

The ability to anticipate the technological performance of manufacturing
processes from different viewpoints is important in every process-planning phase
(planning, monitoring, and control). Machining process performance measures of
wide interest include cutting forces, power, temperatures, tool life, accuracy, and
surface finish [5]. Of these, cutting forces are of particular importance since they
influence the rest of performance measures strongly. For instance, while
programming a computer controlled numerical (CNC) machine to produce a part
of specified geometry and accuracy, knowledge of the likely magnitudes of the



quasi-static cutting force components along the machine axes is essential for
ensuring that the torque/power capacities of the axis-drives are optimally utilized
during roughing passes and that the cutter path is duly compensated during the
finishing pass so as to achieve the desired part accuracy notwithstanding the
geometric, thermal and force-induced deflection errors associated with the
particular machining set up [6].

A wide variety of machining operations are in industrial use today. It is
unrealistic to seek to develop an independent model for each of these ‘practical’
operations. It might be more reasonable to model each practical operation in
terms of a common and simplified machining operation. Armarego (among a few
others) has suggested that this should indeed be possible if one uses a model
parameter database compiled on the basis of data collected from single edge
orthogonal cutting experiments performed using the same work-tool material
combination as used in the practical operation. Based on this premise, he
systematically covered one practical machining after another—e.g., turning [7],
end milling [8], and drilling [9].

Approaches to cutting force modeling of single edge orthogonal cutting
differ substantially. Many models express the cutting force components
associated with each work-tool combination as explicit analytical functions of
the input conditions (e.g., cutting speed, V; cut area, 4, etc). A popular function
is the power function where the function coefficients are determined through
nonlinear regression performed against the measured cutting forces. The model
coefficient database facilitates the prediction of the cutting forces likely to arise
when a new set of cutting conditions is applied. Inevitably, since the exercise has
to be repeated for each work-tool combination, this process requires a very large
and expensive model coefficient database to be built.

A general drawback of the empirical approach is that it treats the
machining process as a black box. No prior knowledge concerning the physics of
the process is assumed to be available. This scenario has changed substantially
since the seminal works of Merchant [10, 11] who introduced certain physical
principles related to the plastic deformation of metals. He idealized chip
formation as a process resulting from shear at a single shear plane. Assuming
that the work material is perfectly plastic, he considered the shear stress, T, on
the shear plane to be a work-material invariant. (This assumption is now
generally recognized to be an oversimplification that does not explicitly take into
account the implications of the possible triaxial state of stress and high strain
rates encountered in metal cutting. However, Armarego [7] and a few others
have observed that the assumption of 7 being constant for a given work material
holds quite well provided that the total cutting force is properly partitioned into
components arising from the specific phenomena occurring at the rake and
clearance sides.)

Subsequently, more complex physics-based models were developed for
single edge orthogonal cutting. These models are commonly known as
‘analytical” models since they have been mainly used to analyze input-output
relationships so as to gain a deeper understanding of the chip formation



mechanisms involved. Such an understanding is essential while conducting
downstream exercises directed towards the estimation of cutting temperatures,
tool wear, etc. The advantage of the ‘analytical’ approaches “is that predictions
are made from [certain] basic physical properties of the tool and workpiece
materials together with the kinematics and dynamics of the process. Thus, after
the appropriate physical data [are] determined, the effect of changes in cutting
conditions (e.g., tool geometry, cutting parameters, etc.) on industrially relevant
decision criteria (e.g., wear rate, geometric conformance, surface quality, etc.)
can be predicted without the need for new experiments. If robust predictive
models can be developed, this approach would substantially reduce the cost of
gathering empirical data and would provide a platform for a priori optimization
of machining process parameters based upon the physics of the system [2].”

More recently, computational approaches based on finite element or
finite difference techniques have been developed. However, a round robin
exercise conducted by CIRP identified several unresolved problems with these
approaches [4]. Hence, it is likely that, at least in the near time future, one would
have to continue to rely on analytical models.

Whenever we attempt predictive modeling of a machining operation, we
are putting faith in the high likelihood of the cutting process being inherently
repeatable. However, often, the facts are otherwise. For instance, consider the
single edge orthogonal cutting data reported by Ivester et al. in 2001 to support
the CIRP International Competition on ‘Assessment of Machining Models’ [2].
The experiments were replicated at four different laboratories while utilizing
tubular workpieces and tool inserts drawn from the same batches. Interestingly,
although extraordinary care was taken while performing the experiments, there
was significant variation (up to 50%!) in the ratio of the measured cutting force
range across the four laboratories to the mean value.

Hill was amongst the first to recognize the inherent variability of
machining processes [12, 13]. In particular, he wondered why the extant theories
of machining did not generally agree with experiments. Was it because the
assumptions underlying the models were unrealistic? Or, was it because
experimental techniques were inadequate? Or, were the theories unsound, even
within their self-imposed limits? Hill focused on the last aspect by envisaging
that “the possibility of uniqueness [in machining] is fruitless: that is, there may
be many, even infinitely many, steady state configurations of a given type (e.g.,
with a single plane of shear or with a ‘false cap’ of given shape adhering to the
tool). Indeed, in a process such as machining where there is little constraint on
the flow, it seems certain that the initial conditions must influence the ultimate
steady state. Granted this, the logical approach to the problem is radically
different. The ultimate objective now becomes not single unique solution, but a
whole range of steady-state solutions of (let us say) the shear-plane type, each
complete in the technical sense and each associated with a set (or sets) of initial
conditions by an intervening nonsteady transitional flow [13].” Next, by
excluding configurations that imply overstressing of materials at the singularities
of stress within the deformation zone in machining, Hill arrived at permissible



ranges of shear angle, ¢, in single edge orthogonal cutting as functions of rake
angle, y, and the apparent coefficient of friction, Ly, at the rake face.

If we accept Hill’s views, the prospects of predictive modeling seem
hopeless. Yet, the record shows that some models have been able to make fairly
good force predictions in the context of certain datasets. For instance, a closer
examination of the datasets reported in [2] indicates that the data from each
individual laboratory are internally consistent to a fair degree. Yet, there are
substantial differences between the force values measured by different
laboratories. This may be explained by the fact that the initial conditions are
strongly dependent on the machining setup used but, for a given setup, are
reasonably repeatable over a limited period. Indeed, there is some hope for
predictive modeling of cutting forces!

Among the analytical cutting force models directed towards single edge
orthogonal cutting operations resulting in continuous chips without the formation
of a built-up-edge (type II chips), the models developed by Armarego [7], DeVor
and Kapoor [14, 15], Kobayashi and Thomsen [16-19], Oxley [20-23], and
Rubenstein [24, 25] are particularly noteworthy.

However, generally, these modelers had used their own specifically
collected data to validate their specific models. This raises two concerns. Firstly,
there is always the possibility of experimental bias in favor of the model being
validated. Secondly, it is not unreasonable for the modeler-experimenter to select
experimental conditions that are likely to result in a cutting process that ensures
as much agreement as possible between the process-related assumptions that the
modeler had made and the actual process. For instance, input conditions might
have been selected to ensure type II chips. This is acceptable if the objective is
just to validate the model, but not for the purpose of predictive modeling. One
would like the model to be reasonably robust, i.e., work in an adequate manner
under shop floor conditions where it is quite possible to encounter a wide variety
of chip-states (including and beyond type II).

It follows from the above discussion that, from a predictive modeling
perspective, it is highly desirable to make a comparative assessment of all
credible cutting models against a common (and large) collection of
independently compiled datasets. However, to date, no such exercise has been
undertaken. An objective of this paper is to fill this gap. In the present work,
twelve distinct datasets drawn from literature are utilized for the purpose of
assessing two artificial neural network-based approaches, two empirical
modeling approaches, and fourteen analytical approaches inspired by the works
of Armarego, DeVor and Kapoor, Kobayashi and Thomsen, and Rubenstein.

This paper proceeds beyond mere model assessment by pursuing two
further objectives. The first is motivated by the observation that almost all
currently available analytical cutting models assume that each data record
includes, in addition to the cutting force magnitudes, the value of the shear
angle, ¢.

Cutting force measurement is usually not a problem. For instance, as
noted by the present authors in [26], cutting force monitoring is easily automated



by sensing machine axis motor currents with the help of Hall-effect sensors. In
contrast, traditional methods of estimating ¢ involve some manual dimensional
measurement of chips. This is a process that is tedious, expensive, prone to
significant error, and difficult to automate Clearly, the need for measuring ¢ is
the greatest single obstacle to the assimilation of cutting force models in
industry. However, very few modelers (with the rare exception of [19]) have
addressed this issue. This paper proposes a new method of estimating ¢ solely
from measured forces corresponding to known input conditions. The method
utilizes a new principle called MVMI (Minimize the Variation of the Material
Invariant) subject to Hill’s classical constraints on ¢ [13] for a given work
material.

The second objective is motivated by the observation that many of the
currently available models have been configured mainly to enable analyses of
individual data records (input-output combinations) to arrive at sets of model
parameters that are plausible when exactly those input states are present. Next,
the patterns implicit in the model parameters are approximated by explicit
analytical functions (e.g., the power function). These functions are then utilized
for the purpose of cutting force prediction for a new input condition. However, it
can be anticipated that different functional relationships will result in different
degrees of distortion. Hence, this paper includes a comparative assessment of
some functions suitable for storing model parameter patterns. The next five
sections discuss some issues of common interest to all predictive modeling
approaches examined in the present work.

LINEAR AND OPTIMIZED CUTTING FORCE PARTITIONING

Early modelers of machining operations had assumed that the cutting tool
was perfectly sharp (e.g., [10.11]). Hence the measured cutting forces, fc- and f7,
could be attributed entirely to chip formation. Subsequent researchers (e.g., [7,
24]) argued that practical cutting tools are always dull, i.e., their cutting edges
would be rounded and possibly exhibit a flank wear land. Owing to the
roundness of the edge, the local rake angles in the vicinity of the work surface
would be highly negative so that it becomes easier for some of the work material
approaching the rounded edge to be extruded towards the workpiece instead of
moving over the rake face as a part of the chip. This process would give rise to
parasitic forces (i.e., to forces that do not directly arise from chip formation) on
the clearance face side of the tool (Figure 1). In short, it is necessary to partition
the total forces into those on the rake side, f¢,rand f7,; and those on the clearance
face side, fcy and fr,. Hence, only the rake side forces should be used while
performing an equilibrium analysis of the chip. Otherwise, there would be
significant errors.
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Figure 1. Single edge orthogonal cutting.

There exist several alternative approaches to solving the force-partitioning
problem. Armarego and Rubenstein (among others) presented empirical evidence
suggesting that, as an approximation, both f- and fr can be taken to be increasing
in a linear fashion with cut thickness, ¢, when other conditions remain the same
[7, 24]. The linear regression lines for f- and fr usually have positive intercepts
along the respective force axes and these intercepts may be taken to be equal to
Jeerand frsrespectively. The rake side force components can then be estimated as
Jar=fc - feerand frr= fr- frr In the rest of this paper, we will refer to this force
partitioning procedure as LFPT (the Linear Force Partitioning Technique).

A radically different approach to force partitioning has been developed
more recently by Endres, DeVor and Kapoor [14, 15]. The parasitic forces on the
clearance side arise mainly because of the penetration of the rounded cutting
edge into the work material (see Figure 1). This results in certain ‘interference
volume,” v;, between the tool and the workpiece, the magnitude of which is
easily calculated once we assume a certain ‘penetration depth’, p, of the dull
edge into the work surface. Endres et al. then develop an expression for v; in
terms of p, r., and the tool clearance angle. Next they express K, t4, 1, Ko and
p in terms of input conditions (% 7., and V) using the following functional form
(explanations of these symbols are provided in the Notation section):

model variable=e(1 +X27/)tcx3 yXa 0

subject to a plausible set of constraints on the coefficients, x; to x,
corresponding to each of the modeled variables. In the rest of the present paper,
we will refer to the functional form contained in equation 1 as ‘UolFun’, i.e., the
University of Illinois Function, signifying the affiliation of its principal
proponents. Next, the magnitudes of the twenty model coefficients are
determined by following a ‘multi-level, multi-pass iterative calibration
algorithm’ that seeks to minimize the total error of machining force predictions.
The procedure is more easily applied when the input dataset is relatively small in
size [27].

After applying their force partitioning procedure to a selection of sixteen
data records from the dataset reported in [28] for SAE 1112 ‘as received’ steel,
Endres et al. arrived at several conclusions that did not agree with those of



Armarego and Rubenstein. In particular, they observed that, for the same tool
(i.e., a tool with apparently the same cutting edge radius), ‘increasing the chip
thickness strongly increases the thermal energy generated and hence transferred
to the workpiece surface. This is reflected by increased tool penetration
dominating over the decreased resistance to such penetration, which causes the
clearance face forces to increase substantially with chip thickness [15].” An
implication of this observation is that the assumption of the linear force-z.
relationship that underpins LFTP cannot be generally valid.

Although it was not highlighted in their publications, a major drawback of
the force partitioning approach of Endres et al. is that it requires prior knowledge
of the cutting edge radius, 7,. The determination of this tool characteristic is
extremely tedious, error prone, and difficult to automate. For the approach to
succeed in an industrial setting, it is essential to overcome this difficulty. With
this objective, the present authors have modified the approach of Endres ef al. in
the following manner:

e  Model K, t45; i, and N . (Instead of modeling K.as in [14,15], we model
N . S0 as to avoid the need for knowing r..)

e We now have only sixteen parameter function coefficients to determine
instead of the original twenty. In principle, these sixteen coefficients may be
estimated using a numerical procedure analogous to the multi-level, multi-
pass iterative process detailed in [27]. However, it appears possible to solve
the problem more elegantly by applying certain well-known techniques of
constrained nonlinear optimization. In particular, we have found it
convenient to use the Interior Point and Exterior Point Penalty Function
Methods described in [29]. Several mathematical software packages (e.g.,
MATLAB) have a library of standard routines to execute such optimization.
The objective function to be minimized is still the total force prediction error
over all the data records in the given dataset. Likewise, the constraints used
by Endres et al. on the model parameter function coefficients are retained.

In the rest of the present paper, we will refer to the above modification of the

method of Endres et al. as the OFPT (Optimized Force Partitioning Technique).

Before leaving the subject of force partitioning, it is necessary to stress
that not all cutting modelers find it necessary to partition forces. For instance,

Kobayashi and Thomsen [16-18] suggest that the magnitude of the shear stress

on the shear plane, 7, may be taken as the slope of the linear regression line

between the shear plane shearing force, F\, and shear plane area, 4;. They also
make the empirical observation that this regression line usually has a positive
intercept, Fy, on the F—axis. However, although Kobayashi and Thomsen were
aware that this intercept could be explained via the ‘ploughing’ effect arising
from a dull cutting edge, they attributed it to ‘size effect’ and/or the possibility
that the “shear plane area [being] actually larger than that determined from chip
measurements because of the fact that some bulging occurs at the free surface of
the chip where the shear plane terminates. This bulging is described as flow
ahead of the shear plane [16].”



NUMERICAL MODELING OF CUTTING FORCE MODEL PARAMETERS

An attractive feature of the cutting force model developed by Endres ef al.
[14, 15] is that, right at the beginning, the parameters such as K, 145 1 and K.r
that are essential during the subsequent force prediction phase are expressed as
UolFuns and the corresponding coefficients for each work-tool material
combination stored in a database to facilitate subsequent force prediction

In contrast, the published works of most other modelers (e.g., Kobayashi,
Armarego and Rubenstein) do not explicitly clarify how their respective cutting
force model parameters may be expressed as functions of input conditions. They
simply present their data analysis methods that yield arrays of individual values
(instances) of the model parameters. By themselves, such arrays do not enable
prediction except when the input conditions are identical. When the new input
conditions are different, one has to interpolate/extrapolate by recognizing the
patterns embedded within the parameter values. This requires the parameter
arrays to be modeled using a suitable analytical function. One way is to use
UolFun (see equation 1). Another is to use a power function such as the
following (called PowerFun):

modelvariable= x1t.*2 V™3 (n/2 - y)™4 2)
Note that the inclusion of the ‘w/2’ term in equation 2 ensures discrimination
between the effects of positive and negative magnitudes of .
Would these parameter-modeling strategies be equally effective in terms

force prediction accuracy? This is a question that has not received sufficient
attention so far. This issue will be discussed later.

EXTENDED SHEAR ANGLE SOLUTION

While implementing modeling approaches such as those due to Armarego,
Rubenstein, and Kobayashi for the purpose of force prediction, it is necessary to

model not only parameters such as 5 1, and N but also the measured shear

angle, ¢,. Whatever model we use, we would like the model estimates of ¢, to
be close to the corresponding raw ¢, values. However, this does not appear to be
a straightforward task.

Consider Figure 2 showing the results of expressing ¢, as a PowerFun.
The data are taken from the 188 data records compiled from single edge
orthogonal cutting experiments performed using 18-4-1 HSS tools on SAE 1112
‘as received’ work material [28]. Clearly, the result is unsatisfactory. While we
would like to see a linear regression line with its slope close to unity and
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intercept close to zero, the actual regression line is highly nonlinear. We
obtained similar negative results when we adopted UolFun.
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Figure 2. Effectiveness of modeling ¢ as PowerFun
(Data from [28], SAE1112 as received, 18-4-1 HSS, Approach Arl from Table 4).

In classical orthogonal machining literature, linear shear angle solutions
(LinSAS) of the following general form have often been used with some degree
of credibility:
p=a-b(f—-7),a<45°,>0.5 (3)
where a and b are appropriate constants, £ is the tool-chip friction angle and yis
the rake angle.

For instance, Merchant [11] developed his first shear angle solution by
invoking the principle of minimum energy in conjunction with his idealization of
orthogonal cutting as a shearing process occurring over a shear plane in the
presence of a perfectly sharp cutting edge. This approach resulted in the
LINSAS with a=45° and b=0.5. However, this solution was not found to be in
general agreement with empirical data—not necessarily because the principle of
minimum energy is inapplicable but because the principle is applied in
conjunction with an erroneous or oversimplified cutting model (e.g., the
assumption that shear occurs over a single shear plane).

To appreciate the effectiveness of equation 3, consider Figure 3 where, for
the same data as used in Figure 2, ¢, is plotted against (f-y) obtained via LFPT.
Clearly, drawing a single straight regression line to determine the most
appropriate values of a and b will lead to highly unsatisfactory results.
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Figure 3. (S-y) from LFPT versus ¢, plot (Data: same as in Figure 2).

However, a closer examination of the data-points in Figure 3 reveals that
they could be partitioned into three subsets each exhibiting a separate but
approximately linear regression. This insight suggests that the linear shear angle
solution could be ‘extended’ by expressing constants a and b as independent
functions such as PowerFun. However, since ¢. usually has negligible influence
on the shear angle, we may ignore the 7.-terms in the two PowerFuns. Based on
these observations, we now propose the following generalized form of the

extended linear shear angle solution (ELinSAS):
ELinSAS: ¢=x V2 (n/2=9)" —x V= (n/2—p)* (B—-y) “4)

Figure 4 shows the effectiveness of applying ELInSAS to the data in Figure 2.
Comparing it to Figure 2, it is clear that ELInSAS has yielded a substantially
improved result.

SIDESTEPPINGTHE SHEAR ANGLE PROBLEM THROUGH ‘MVMI’

A major difficulty with most analytical models of cutting is that their
application requires the magnitude of the shear angle, ¢, corresponding to each
data record to be known in advance. Usually, this is achieved through
measurements of chip thickness, length, or weight. In any case, certain
dimensional measurements performed on flattened chips cannot be avoided.
However, dimensional measurement of a chip is a tedious process that is not
easily automated. The significant manual effort required and the fact that the
chip surface is usually quite rough makes the process highly error prone.

12
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Figure 4. Effectiveness of the extended linear shear angle solution
(Data: same as for Figure 2).

The shear angle problem may be solved by utilizing some plausible
physical principles to develop a ‘shear angle solution’ expressing ¢ as a function
of some process parameters that can be directly computed from measured forces.
For example, provided that we know the magnitudes of constants a and b, we can
estimate the shear angle from the friction angle by using the linear shear angle
solution described in equation 3. Over the last five decades, some fifty odd shear
angle solutions have been developed. However, two problems remain. Firstly,
the range of application of each shear angle solution seems to be limited. A
given solution may work on some datasets but not others. Secondly, the solution
coefficients still need to be calibrated against measured shear angles (as in the
case of LinSAS as well as ELinSAS referred to in the previous section). Clearly,
it is essential that we find a way of sidestepping the problem of shear angle
measurement entirely.

Cumming et al. seem to be among the very few who have come close to
sidestepping the problem. In [19], they argued that, quite frequently, fris found
to be linearly related to fc so that ¢ can be estimated by minimizing the overall
deviation between the actual values and the values expected from the linear
relationship. Thus, it was concluded that ‘no reference need be made to the
actual angle ¢, and better equivalent angles are determinable if a stiff but
sensitive dynamometer is available.” Cumming et al. also outlined a more
generalized quadratic fr versus fc relationship but did not demonstrate its
implementation.

The key idea behind Cumming’s approach consists of two steps. Firstly,
based on plausible physical considerations, we identify a relationship among one
or more key process variables that is likely to generally hold, i.e., remain
invariant. Next, we determine the distribution of ¢ that minimizes the deviations
(variance) from this relationship over all the data records under consideration.
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An analytical modeler usually strives to arrive at generalizations that are
expected to hold over a wide range of input conditions. Some generalizations are
expected to hold for a particular work-tool material combination. Others are
expected to hold irrespective of the tool material and cutting conditions as long
as the work material remains the same. It appears that the most general (hence,
the most ‘invariant’) among these is the work material related invariant. On this
basis, we suggest that it should be possible to arrive at a likely distribution of
shear angle simply by minimizing the fractional variation (the ratio of the
standard deviation to the mean value) of the most significant work material
‘invariant’ involved in the model. Henceforth, we shall refer to this procedure as
MVMI—Minimizing the Variation of the Material Invariant in the given model.

For instance, in the context of Armarego’s approach, MVMI takes the
following form. First, we apply LFTP to determine fc,z, /7, fcos and frr values for
each record k of dataset j. Next, we determine 4, 4, and Ny for all data

records in the dataset. These values are then modeled using separate UolFuns or
PowerFuns through numerical nonlinear regression. Thus, 3x4=12 model
parameter coefficients would have been determined at this stage. Next, we
determine S = arctan(y,) for all data records in the dataset. It is assumed that the
¢-distribution across the dataset follows a single ELinSAS so that there will be
six additional coefficients to be estimated. Next, we compute the lower and
upper limits, ¢z, and @uzy respectively of ¢ for each record & in dataset j using
the equations developed by Hill in [13]. (The constraints placed on possible
values of ¢ merely ensure that the optimization procedure does not converge to
an unrealistic value of ¢, e.g., ¢ — 0. Once, the extreme value has been avoided,
the limits chosen have little influence on the value of ¢ to which the process of
MVMI converges. It has been found that one can arrive at the same optimized
values by using a different but plausible set of constraints on ¢.)

Finally, we perform the nonlinear least squares optimization using the
Exterior Point Penalty Method [29] that minimizes the following objective
function, O:

k=n;
0= Ytk ~7j +KplSLB @bk —dLBjk)
k=1
+0UB Pk — ¢UBjk)2 }
where 7y is the estimate of 7 for record & in dataset j, K, is a penalty constant
k=n;
2.7 jk
7 ; =mean rsz, (5b)
J "
dugr and @ug are the lower and upper limits respectively on ¢ for record k& in

dataset j, o5 is equal to 0 if @y >¢5, else it is equal to 1, and dy; is equal to 0 if
i <dyps, else it is equal to 1.

(5a)
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In contrast, Kobayashi and Thomsen’s shear plane-based models of
orthogonal cutting do not require force partitioning as a prerequisite for
determining 7 [16-19]. For a given dataset with constant work-tool material
combination, 7 is determined as the slope of the regression line between the
shear force on the shear plane, F|, and the area of shear plane, A;. This 7 is the
work material invariant in this model. Hence MVMI for this model may be
implemented by following essentially the same procedure as that described
above for Armarego’s model except that, while implementing MVMI, the scatter
of the data points with respect to the F versus A regression line is minimized.

Notwithstanding the popularity of the shear plane approach, it must be
emphasized that the notion of shear plane is only an approximation. Once we
recognize a shear zone of finite thickness, shear strain rate and temperature
would vary gradually across the shear zone. As a result, 7 could also vary across
the shear zone. In other words, a single value of 7 might not suffice to
characterize the influence of the work material on the cutting force magnitudes.
Among the foremost practitioners of this approach are Oxley and his associates
[20-23] who have moved away from the simplistic and semi-empirical view of
constant 7 by considering a host of variables associated with the shear zone of
finite thickness and the tool-chip interface.

From the viewpoint of force prediction under shop floor conditions, shear
zone-based approaches such as that of Oxley are difficult to implement. They
require prior knowledge of several work material related parameters that are
difficult to evaluate. This has to be done for each and every work material
encountered on the shop floor. Besides, we have found it difficult to implement
some of our optimization strategies (to be discussed later) in association with
such shear zone based analyses. For these reasons, in the present paper, we have
not attempted to assess the models developed by Oxley and his associates. We
leave this issue to future researchers.

However, there is empirical evidence suggesting that, in many cutting
situations, shear zone thickness decreases with increasing cutting speed (modern
machining practice is tending towards higher and higher cutting speeds), so the
shear zone can be assumed to be ‘thin’ and, hence, 7 may be taken to be the
model invariant.

In Rubenstein’s approach [24, 25], the shear flow stress, s, along the lower
boundary of the shear zone is the work material invariant. Rubenstein recognizes
that there must always be a shear zone of finite thickness and assumes that the
‘lower’ boundary (the boundary away from the chip-side) of the zone is a slip
line. He then presents arguments leading to the conclusion that, irrespective of
the normal distribution on the lower boundary and whatever be the friction
conditions at the tool-chip interface, s can be simply calculated in single edge
orthogonal cutting as

s=fCrf {Ac(cotg +1)} (6)

Note that the above equation includes ¢ merely for the purpose of enabling
the results to be presented in a simple manner. Note also that, in contrast to the
shear plane located somewhere in the middle of the shear zone, the lower
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boundary is at the initial end of the shear zone. Hence, unlike 7, s should remain
unaffected by the strain distributions within the shear zone although some
temperature influence could still be present. Hence, s is the material invariant in
this model. The major advantage of Rubenstein’s approach is that, in contrast to
7, s can be determined without any reference to the friction coefficient, 4,4 at the
tool-chip interface and solely from f,rand ¢. The disadvantage is that only fc,,
can be predicted and we need to invoke some other method to predict /7,

AGGREGATE RELATIVE FORCE PREDICTION EFFECTIVENESS OF
A MODEL

We may take the root mean square (rms) of the deviations between the
predicted and measured forces as a measure of the prediction error of the model
over the dataset. Thus,

IF model i has succeeded in predicting
cutting forces with acceptable error over dataset j,

e; =rms force prediction error of model i

over all therecords,k =1:n,; of dataset j
S e = Sop)” + X e = frp)” (7)
2(n,; —1)

ELSE
e; = NAN (Not a Nunber)

(See Notation section for explanations of thesymbols.)

Note that the above error estimate arises due to two reasons: data errors,
and modeling errors. Data errors can be classified as those due to assignable
causes (e.g., the dynamometer has not been properly calibrated, or an inadequate
chip measurement technique has been applied) and random errors due to
unknown causes. Likewise, modeling errors can be of different types. Firstly, not
all the model assumptions might not be valid in the particular machining context.
For instance, whereas the model has assumed type II chips, the actual chips
might not be fully continuous. Or, there could be a built-up-edge present. Or,
while the model assumes a thin shear zone to be present, the actual shear zone
might be quite thick. Secondly, even though the model assumptions have been
fully satisfied (a rare occurrence), the physical principles on which the model is
based might be flawed to some degree. The model parameter estimates obtained
from the data analysis phase would be that much in error. Thirdly, even if the
model parameters have been estimated reasonably accurately, there could be
varying degrees of error caused while we numerically model the parameters. We
must remember that there is no specific physical basis underlying UolFun,
PowerFun, or ELinSAS. These functions might not always be capable of
capturing fully the regularities implicit in the corresponding model parameter
distributions. It is also possible that different kinds of regularities exist across
different subsets of the same dataset. For instance, model parameter behavior at
higher speeds could be very different from that in a lower speed range. Yet, we
are trying to model both parts of the dataset using the very same functional form.
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Finally, there is the possibility of the initial conditions being different across the
dataset (recall Hill’s arguments [13]) and the modeling procedure is unable to
take into account the influence of variations in initial conditions.

We could assess a model in an absolute sense only when we have a dataset
that is totally free of experimental errors. Our problem is that we can never hope
to have such a ‘perfect’ dataset. Alternatively, if we have a ‘perfect” model in
hand, the e; estimate resulting from this ‘perfect’ model would entirely be data
error. We would then know the variance due to data error. When we are
assessing a different and less than perfect model, we can subtract the variance
due to data error from the total variance so as to arrive at the corresponding
variance due to modeling error. Again, our problem is that we could never hope
to have a ‘perfect’ model available.

Clearly, the only recourse we have is to adopt a ‘relativistic’ approach.
When we compare the performances of a set of imperfect predictive models over
a specific imperfect dataset, the data errors are common across all model
implementations. One of these model implementations would be the ‘closest’ to
the unknown ‘perfect’ model. We may use (quite arbitrarily) this ‘closest ‘model
as the reference against which rest of the models are evaluated. The advantage of
this approach is that, although we are unable to quantify the degree of perfection
of a given model in an absolute sense, we will still be able to rank the available
models in the order of their closeness to perfection.

Based on the above rationale, the following procedure is proposed for
assessing the aggregate relative force prediction effectiveness (RFPE) of a given
modeling approach:

IF e; = areal number
(RFPE); =relative force prediction effectiveness
of model i over dataset j
~ min(e;; ?:ml for dataset j

®)
€
[Note : Thus,(RFPE); <1]
ELSE
(RFPE);; =0

Note that the RFPE-values are meaningful only in the context of the specific sets
of models and datasets over which the assessment exercise has been conducted.
This must be borne in mind while drawing generalized conclusions from such an
assessment exercise.

The above feature also highlights the futility of trying to build a “House of
Models [3]” that exists on its own. As in much of nature, in the context of
machining models too, ‘fitness for purpose’ is not universal. Since the work-tool
material combinations normally encountered by different machines operating in
different shop floors are likely to be quite diverse, one cannot expect the same
predictive model to emerge as the ‘winner’ in every machining situation.
Likewise, the initial conditions and ranges of cutting conditions could be quite
different. Therefore, it is better to equip each shop floor machine with force
prediction software that compares the performance of several competing models
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from data that are continuously gathered by the specific machine. Each machine
should be allowed to ‘discover’, in a Darwinian fashion, the model that has the
‘best fit’ with the environment in which it normally operates. However, if we
insist on building a “House of Models” so as to promote the development of
improved models, we would have to build a companion ‘House of Data’ too so
as to act as a reference. One cannot exist without the other.

DATASETS

Table 1 details the twelve datasets used in the present comparative
assessment (i.e., n; = 12). Note that the order of datasets in the table has no
significance. With 188 records, dataset 1 is the largest in Table 1. Eggleston et
al. had collected these data in 1959 for the purpose of testing several shear
angle solutions available at that time [28]. They appear to have been quite
meticulous in measuring chip dimensions for the purpose of estimating ¢. Their
data indicated that LinSAS is only approximately satisfied and not all ¢ values
fell within Hill’s limits. However, these observations were based on an analysis
that had not invoked partitioning of the total forces between the rake and
clearance sides. The way force partitioning is effected could result in different
[ values and, hence, in a different degree of agreement.

Datasets 6, 7, and 8 were collected by Ivester et al. in 2002 to support
the CIRP International Competition on ‘Assessment of Machining Models [2]’.
The experiments were replicated at four different laboratories with each
laboratory using a different machine but utilizing workpieces and tool inserts
drawn from the same batches. However, the input conditions spanned by each
laboratory were not identical. Further, although great care was taken while
performing the experiments, there were substantial differences in the f- and f7
values recorded for nominally identical input conditions at different
laboratories. For instance, for one particular input state, f- was measured to be
580N by one laboratory and 980N by another laboratory! For this reason, while
compiling the data records in datasets 7 and 8, we have used the average values
of measured forces across the four laboratories. Further, the measurements of
cutting forces and of shear angles were not conducted simultaneously, but with
different input conditions at different times. Consequently, it could not be
ensured that the initial conditions prevailing during the two exercises were the
same. In view of these problems, we have ignored the shear angle values
provided in [2]. As a result, we have been unable to assess modeling
approaches Arl, Ar2, R1, R2, KT1 and KT3 over datasets 6, 7 and 8 (see
Tables 3 to 6).

Table 1. Dataset details.

Work Tool 1% t, W, My
Jj | Reference. Material | Material deg '

m/min
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1 SAE
1112 188
as 5to 10 to 0.05
received 40 52 to 5.1
2 SAE 0.25
Eggleston 1112 18-4-1 78
et al. annealed HSS
3 (28] 2024 T4 175 to 93
Al 240
4 6061 T6 175 18
Al 20 to
5 40 0.05-| 4.6 49
Brass cd 144 0.28
6 9
K68 (Lab
carbide, -7 200 0.15 1)
7 Ivester AISI 1045 | uncoated to to 52
etal. steel to 300 0.30 6 (Labs
(2] 1-4)
8 K68 +5 56
carbide, (Labs
Coated 1-4)
9 Lapsley Steel ar HSS 25 0.06
etal. to 27.4 to 12.1 20
[31] 45 0.22
1 | Kececioglu | SAE1015 steel -10to | 38to 0.1 22
0 [32] 118 BHN cutting 36.5 227 to 4.3
carbide 0.3
1 Merchant NE9445 carbide -10 to 60 to 0.02 15
1 [12] steel 10 361 to
0.2
1 | Crawford & | SAE1020 18-4-1 0 to 19to | 0.16 | 6.35 24
2 Merchant hot rolled HSS 50 159
[33]

Dataset 9 was collected by Lapsley, Grassi and Thomsen in 1950 [31]
for the purpose of correlating plastic deformation of the work material in
cutting with that under pure tension. Dataset 10 was collected by Kececioglu in
1958 for testing some prevailing models [32]. Datasets 11 and 12 were
collected by Merchant in 1945 and 1953 respectively. The former was used by
Merchant to demonstrate his chip-equilibrium model and his first shear angle
solution. The dynamometer used in either case was of a primitive type using
dial gages. Hence, one should be cautious in drawing generalizations from
these two datasets.

Note that, in contrast to datasets 1 to 3, datasets 4 to 12 are quite small in
size. We would like to model the influence of at least three variables (V, ¢., and
) on cutting force magnitudes. One may also assume that the effects of each of
these variables would be nonlinear in nature. Further, the process of
determining model parameter coefficients in our procedure involves statistical
nonlinear regression. Likewise, when we estimate shear angles via our MVMI
procedure, we need to employ a nonlinear constrained optimization procedure.
Both these procedures work more robustly and converge with greater ease
when n,; is large.
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It follows from the above discussion that it is more desirable to work
with larger datasets rather than smaller ones. But, large datasets are expensive
to compile in a laboratory setting that depends on manual chip measurements
to estimate ¢. Here lies the importance of the MVMI approach.

The realization that large datasets could facilitate predictive modeling of
cutting operations is not immediately evident from cutting literature. For
instance, as recently as in 1995, Endres ef al. [14, 15] validated their modeling
approach against a selection of just 16 data records drawn from the 188 data
records available in Eggleston’s 1959 data (dataset 1 in Table 1). The reason
cited was computational efficiency.

FORCE PREDICTION USING ARTIFICIAL NEURAL NETWORKS

An analytical cutting model captures the patterns implicit in a given
dataset by attempting to relate them to certain widely accepted principles of
science. This approach is distinct from pattern recognition using an artificial
neural network (ANN). An ANN is not equipped with any scientific knowledge.
It is merely an algorithmic procedure that (hopefully) is capable of recognizing
patterns implicit in a given set of data irrespective of their origin—based on
process-physics, or otherwise. On the other hand, the advantage of using ANN-
based modeling is that no assumptions need be made regarding the physics of the
process. Hence, provided that a reasonably effective ANN algorithm has been
used, we can expect the e; estimate from an ANN to be significantly smaller than
that arrived ay by an analytical model that, somehow, has to make the ‘right’
physical assumptions and use the ‘right’ scientific principles. In short, ANN-
based modeling should be of help in arriving at the smallest possible estimate of
€jj.

In view of the above considerations, two ANN strategies have been
implemented in the present work. Approach BPN uses a back propagation
network (BPN)—see MATLAB 6.1 neural Network Tool Box for details—using
three input nodes (V, 4., and %), four hidden nodes, and two output nodes (fc and
fr)-

The second is an adaptive neuro-fuzzy inference system (ANFIS).
ANFIS is a four-layer neural network that simulates the working principle of a
fuzzy inference system [34-36]. Our ANFIS had two hidden layers of six nodes
each. The input and output layer configurations were the same as in the BPN
implementation.

PREDICTIVE MODELING: EMPIRICAL AND PHYSICS-BASED
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While our primary interest is in cutting force prediction, we would also
like to gain some physical insights into the process of chip formation that are
useful in subsequent modeling of cutting temperatures, tool wear, etc. In
particular, three types of additional physical insights are possible: (i) insights
regarding how the total cutting forces are partitioned and, hence, of the
magnitudes of normal and friction forces acting at the chip-tool (rake side) and
work-tool (clearance side) interfaces; (ii) insights regarding the shearing process
(e.g., knowledge of the work material invariants such as 7 and s) provided that ¢

has been empirically determined. Hence, these are also at level 0.

Tables 2 to 6 summarize the equations used in the data analysis (column
2), parameter modeling (column 3), and prediction phases (column 4) of the two
empirical and fourteen analytical modeling approaches that we have assessed so

far.
Table 2. Implementation details of purely empirical modeling approaches.
Appr. | Data analysis Modeling and Db Prediction equation
equation sequence sequence
EU . K, p1r: UolFun
_ s M _K. w.
EoJessinyt focosy (Physics level: 0) Noy=Rogtewe
. . Fr =My 'Nr :
EP Nrf:fCrfCOS}/'fTrf51n7/ Krf’ ad Powerfun f_ lUf /
. | (Physics level: 0) Je= Eysinyt Nycosy
Kr=N,/A, 4 ver Ji= F.cosy- N,siny
toy = FrfNoy

Table 3. Implementation details for approaches inspired by the analytical models of

Kobayashi and Thomsen [16-18].

Appr. | Data analysis Modeling and Db Prediction
equation sequence equation sequence
A=w, t, Regress F; against 4. E=tppdlfc
KT1 . . .
A= AJsing,, Thy=regression line slope. f=arctan(s,)
. ) Fyypy=regression line intercept. O=pB-y
ffn ;f cCoshn-fr | ELinSAS(4,) A=t 0
o 447+ UolFun 7={sin(2¢+0)-
Jor=Jesinyl+ fr . sin@}/(1-siné)
cosy (Physics level: 2) fe={tppAAF ypysi
_ ) Same as for KT1, except that ng)/n}{2cos0/(1-
KT2 | Ny=fc cosy-frsiny 14 PowerFun sin)}
(Physics level: 2)
H=Fry !Ny
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KT3

For each iteration,
assume ELinSAS
coefficients and find
trial @.

Now follow
procedure for KT1
and KT2 but using ¢
for ¢@,.

ELinSAS(min scatter(F vs 4
regression line).

Regress F; against 4.
Hy=regression line slope.
Fypy=regression line

My UolFun
(Physics level: 3)

Jr=fctan8

Table 4. Implementation details for approaches inspired by the analytical model of
Armarego [7].

N(,f = ch/WC

Kijf' = Nr;/Ac

Hop = Frf/Noy

Hey = Fof/ Ny
P=arctanys,,

=p-y

F=fc,c08@y, - fr51n,
=F /A,

s, Ntz PowerFun

Rest as for Ar3.
(Physics level: 3)

Appr. | Data analysis equation Modeling and Db Prediction
sequence equation sequence
Arl OFTP: Perform linear | » Ng ,and A=Adsingy
regression of f¢ and fr fu= N g w,: UolFun F&= oA,
against .. Intercepts are o~ Nef Ve PB=arctany, ,
feerand fr: Tpp=mean( 7) 0-p-y r/
forfe- o 7 ELmANG,) Ry F, fan(g+0)
fo= Ny=fr-frr (Physics level: 2) Jor= Ryc0s0
: — R sing
A A =tw, tops Nef  tey: PowerFun o= /smi
A=A Jsing Rest as for Arl. Jrem No= N o we
=A./sin .
= s A SM Py, (Physics level: 2) fcqu Loy frer
T . d .
F.= fcsiny+ f7,c08 = J&= fort feor
f_fC S1Y foC Y s Nery phe,r: UolFun fIZfTrerﬁ‘cf
N, = fryCOSY - fysin Thy=mean( 7)
7 enCOST = fuSINY | i SAS(MVMI ()
Physics level: 3
apq | Fo=Jee Ly )
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Table 5. Implementation details for approaches inspired by the analytical model of
Rubenstein [24, 25].

Appr.. | Data analysis Modeling and Db Prediction equation
equation sequence sequence
R1 Sameasin Table4 | /N 4 : UolFun ];c;;;rztD:HAc(cotﬁl)
except that instead spy=mean(s) Hef
fining 7, find s as bo O=f-y
(Physics el 3) o foan
R2 § fC’_‘f/{Ac(COt¢m +1)} Krf, Lo KQ//WC “Power Rest as fTC/_ NQ/— ch We
for R1. Jeo= Hogfrer
(Physics level: 2) J& fort feor
R3 _ Jr= St fre

gy Nef, ey UolFun

spp=mean(s)
¢~ELinSAS(MVMI( s))
(Physics level: 3)

R4

Ly Ner, thes: PowerFun

Rest as for R3.
(Physics level: 3)

Table 6. Implementation details for approaches inspired by the semi-analytical model of
Endres, Devor, and Kapoor [14, 15].

Appr. | Data analysis Modeling and Db Prediction equation sequence
equation sequence
EDK] | AeTlewe Optimize UolFun Ny=RKoftew
Fp =1 Ny

coefficients of K, 1,1,

Jre= Neg = N of we

chjz ;ucjchjf'
Jo= foyt feo
Jr=Jrort frop

N ¢ and M for
minimum rmse of {f¢
fr} prediction.

(Physics level: 1)

EDK2 Start for EDK1. Then Same as for Arl in Table 4.
THp=mean( 7)

¢=ELinSAS(MVMI( 7))

(Physics level: 3)

EDK3 Start as for EDK1. Same as for R1 in Table 5.
Then: sp,=mean(s).

¢#~ELinSAS(MVMI(s))
(Physics level: 3)
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Approach EU in Table 2 uses UolFun as the empirical modeling function
whereas approach EP uses PowerFun. Hence, these are also at level 0. The
analytical approaches vary in terms of levels of insight (see column 4 of the
table).

The analytical approaches vary in terms of levels of physical insight (see
column 3 of each table). Approaches KT1 to KT3 (in Table 3) are inspired by
the works of Kobayashi and Thomsen, Arl to Ar4 (in Table 4) of Armarego, R1
to R4 (in Table 5) of Rubenstein, and EDK1 to EDK3 (in Table 6) of Endres,
DeVor, and Kapoor. The reader may obtain an understanding of the basic
theories behind the approach summarized in each table by perusing the
references cited in the corresponding table title.

With respect to each approach, the following procedure is repeated over
all the data records of each dataset. Firstly each data record, k£ (of dataset j), is
processed using the analytical version of each modeling approach as given in
column 3 of Tables 2 to 6. This step yields the particular subset of the set of
model parameters (e.g., K, 45 My7 and/or s) pertinent to the particular
modeling approach. Next, these are numerically modeled as UolFun or
PowerFun by applying the corresponding nonlinear regression technique. At the
same time, the measured shear angles over the dataset are either modeled using
ELinSAS, or a theoretically plausible shear angle distribution of the ELinSAS
form estimated through MVMI. The key equations utilized during this phase are
listed in column 4. The resulting model coefficients are stored in a database for
retrieval during a subsequent force prediction exercise. Column 4 lists the key
equations involved in the prediction phase. Essentially, these equations are
reorganized versions of the corresponding analytical equations listed in column
2.

ASSESSMENT RESULTS AND DISCUSSION

Table 7 shows the rms force prediction errors (in N) obtained from the 18
modeling approaches with respect to each of the 12 datasets listed in Table 1.
For each approach, the aggregate relative force prediction effectiveness values
(ARFPE) calculated over all the datasets are shown in the last column. Note that
some approaches have failed over certain datasets. Whenever a failure has
occurred, the reason for the failure is indicted by a code (F1, F2, etc.) in the
corresponding cell in Table 7. The nature of failure corresponding to each code
is described briefly in Table 8.

It is seen that dataset 1 (compiled by Eggleston ef al. [28]) is the only one
over which no failures have been observed. Therefore, it is not surprising that
several modelers have used this dataset to validate their ideas. Dataset 2 has also
fared well. Note that both datasets 1 and 2 are fairly large in size. With the
exception of dataset 3, the remaining datasets are of much smaller size. This
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reinforces the earlier observation about the desirability of working with as large

a dataset as possible.
Table 7. Performance of the 18 approaches over the 12 datasets detailed in Table 1.

Appr. e; (N) over dataset j &
1 2 3 4 1516 | 7|8 ]|9]10]11 |12 %

BPN | 51 |38 | 15| P, | 19 | 17 | 71 | 40 | 55| 50 | 42 (105 0.81
ANFIS| 44 | 23 | 14 | P, | P, | 17 | 71 | 40 | Py | P; | 160 | P, 0.71
EU | 74 | 60 | 33 | F, | F; | 21 | 76 | 41 | F, | 119|369 | F, 0.43

EP 83 | Fi | 38 | 47 | 25| 22 | 76 | 41 |154|132| F, |265 0.46

KTl | 76 | 52 | 82 | F; | F; |[NA|NA|NA | F, | F, [2399| F, 0.25
KT2 | 77 | 52 | 94 | 58 | 36 | NA | NA | NA |254| Fs (2243|415 0.33
KT3 | 70 | 47 | 38 | F, | F; | 13 | 49 | 28 | F, | 92 |324|F, 0.51

Arl | 102 | 80 | F, | F; | F; | NA|NA |NA| F; | 836|2957| F; 0.17

Ar2 | 104 |346| Fs | 131| 26 | NA | NA | NA |136|228 (1557|305 0.23

Ar3 | 110| 60 | 62 | F, | F, | 19 | 76 | 27 | F, | 863 | Fs | F, 0.36

Ard | 138|367 | 38 | 130| 26 | 19 | 73 | 26 |140| 158 | F, (287 0.42

Rl | 115]| 86 | Fs | F; | F; | NA|NA|NA | F; | 848 |3304| F, 0.15

R2 | 108 |330| Fs | 130| 41 | NA [ NA | NA 127|258 (1954|296 0.21

R3 95 | 60 | 49 | F, | F; | 17 | 80 | 29 | F, | 842|5071| F, 0.38

R4 | 117|373 | 30 | 128 | 27 | 14 | 73 | 25 |135| 157 |4067(260 0.46

EDKI1| 63 | 43 | 25 | 48 | 23 | 18 | 72 | 40 |644| 73 |226 (183 0.63
EDK2| 72 | 44 | 130 49 | 79 | F, | F3 | F5 |660(1182| 233|193 0.34
EDK3| 72 | 43 | 111 | 49 | 75 | F, | F3 | F5 |661(1000| 234 |187 0.34

NA: Not applicable because measured ¢ values are not available in the dataset.
Note: min(e;;) for each dataset is shown in bold font.
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As anticipated in the previous section, the force prediction performances
of the two ANN-based approaches are significantly superior to those observed
with respect to the 16 empirical/analytical approaches. With its ARFPE equal to
0.81, the performance of BPN is quite impressive. However, there is always the
possibility that, on small sized datasets, BPN has ended up memorizing data
rather than recognizing patterns implicit in the data. Further work is needed to
establish how well this approaches scales up.

Table 8. Descriptions of the failure codes in Table 7.

Code Reason for failure

F1 Numerical modeling of K5 445 , gtr0or N could not proceed.
F2 Optimization routine did not converge.

F3 Zero values of ¢ encountered due to programming problems.

F4 ‘Divide by zero’ encountered due to programming problems.

P1 Dataset does not include sufficiently wide range of ¥

P2 Insufficient number of records in the dataset.

P3 Suspected memorization rather than generalization by the ANN.

Although, ANFIS has failed to produce acceptable results on five of the
twelve datasets, its ARFPE value of 0.71 is close that of BPN. However, note
that when the number of records is large (such as in datasets 1, 2 and 3), ANFIS
has performed better than BPN.

ANFIS has yielded rms force prediction error values of 44, 23, and 14N
over datasets 1, 2, and 3 respectively (the larger datasets). We may therefore take
these values as the upper bounds on the data errors contained in the two datasets
(recall our earlier observation that an ANN is not embedded with any physical
knowledge about the process being modeled—hence it neither interprets nor
misinterprets the process). Dataset 1 has SAE1112 as the work material in
‘as received’ state whereas dataset 2 uses the same work material but in
the annealed state. The work material in dataset can be expected to be more
uniform as well as softer. This might be the reason for the lower value of ¢;
associated with dataset 2.

Sidestepping approaches KT3 and EDKI1 for the moment, the two
empirical approaches 1 and 2 exhibit the two next best performances. These
approaches are purely empirical in nature, hence, devoid of any physical
insights. In contrast to approach EDK1, these cannot even partition the cutting
forces. Yet they exhibit inferior performances. Could it be that there is a
compromise between the level of force prediction effectiveness of a model and
the degree of detail to which the model can provide physical insights?

In fact, with ARFPE equal to 0.51, approach KT3 has outperformed the
two empirical approaches. The analytical part of this approach generally follows
the ideas originally developed by Kobayashi and Thomsen [16-18] in the early
1960s. Thus it is the earliest of the analytical approaches listed in Tables 2 to 6.
The approach is rich from the viewpoint of physical insights with regard to
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parameters such as ¢ and 7. Yet, it is able to predict forces in a superior manner
(it is at level 3).

Although they were developed subsequently, with ARFPE values 0.17 and
0.15 respectively, approaches Arl and R1 have fared quite poorly. The poor
performances seem to arise from the fact that no optimization procedures have
been adopted. Force partitioning is based on the simplistic notion of LFPT prior

to parameter modeling. This results in y, 5, N, and/or 4,z being associated with

much scatter so that the subsequent modeling of these parameters using UolFun
is associated with much error. As a result, the predicted friction angle, S,
sometimes exhibits too much scatter for an ELinSAS to be fitted in a reliable
manner. However, from a procedural viewpoint, Rubenstein’s approach is easier
to implement because the determination of s needs only fc and ¢ to be known.
Approaches KT2, Ar2 and R2 differ from KT1, Arl and R1 respectively
only with regard to the empirical function used for modeling analytically derived

parameters K,; t45 Ngf, and u, (PowerFun substitutes UolFun). Note that in

each case, there is an improvement in the ARFPE value. Interestingly, although
UolFun is of more recent origin, its performance is not any better. However, it is
possible that there are superior functions waiting to be discovered.

Among the empirical/analytical approaches, approach EDKI1 has
demonstrated the best performance. This approach adopts a simplified version of
the ‘dual mechanism’ theory proposed more recently by Endres, DeVor and
Kapoor [14, 15]. The original approach had used UolFun to model five force-
related analytical parameters for the purpose of arriving at an optimized force
partitioning that minimized the force prediction error over a dataset. Our
implementation (OFPT) however ignores the possible variation in the cutting
edge roundness. As a result, the number of model parameters to be estimated is
reduced by one. However, despite the simplifications, the ARFPE value of 0.63
for approach EDK1 is quite large. The approach has been able to model all the
twelve datasets (the rms error value of 644N is quite large for dataset 9 because
the number of data records is small). Further, over eight of the twelve datasets,
its performance is next only to those of the two ANN-based approaches. The
main reason for this is that the approach uses an optimized force partitioning
technique (OFPT).

Figure 5 indicates that the rms error of EDK1 over dataset 1 is 63N. We
have already noted that, over this dataset, ANFIS has achieved the lowest rms
error value equal to 44N. This figure must be close to the data error since, as
already noted, this dataset exhibits a fairly regular behavior. This suggests that
the modeling error associated with EDK1 is of the order of (63°-44%)"° = 45N, a
value that is of the order of the data error.
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Figure 5. Force prediction accuracies of EDK approaches.

Figure 6 illustrates the variation of the optimally partitioned rake-side
cutting force, fc,;, over dataset 1 as estimated from approach EDKI1 (and its
sequels EDK2 and EDK3). Note that the trends of f,, are in broad agreement
with expectations from traditional cutting theories: increasing with increasing z,,
decreasing with increasing y, and being relatively insensitive to changes in V.
Similar general agreement was also obtained when the f7,, values were plotted.
Further, the trends of the apparent chip-tool coefficient of friction, 4 have also
been found to be in accordance with expectations (see Figure 7): slightly
decreasing with increasing 7., and increasing with increasing y and V. Further, all
M values are in the range 0.4 to 0.8.

Literature on clearance-side forces has been relatively sparse compared to
that on rake-side forces. Among the few papers available, the ‘dual mechanism’
paper of Endres, DeVor and Kapoor [14, 15] seems to provide the greatest
insights. Although the actual magnitudes are somewhat different, our
observations (see Figures 8 and 9) with regard to clearance force variations are
in qualitative agreement with those in [15]. Note from Figure 8 that, as expected
from general cutting theory, f7, is relatively insensitive to #. Likewise, it
decreases with increasing rake angle. The most interesting observation however
is that the tool-work penetration force decreases substantially at higher cutting
speeds—probably due to temperature-dependent softening of work surface layers
as they approach the rounded cutting edge [14, 15]. Similar trends have been
observed with regard to the clearance-side friction force, fr.; except that its
decrease with increasing cutting speed is less pronounced. This means that the
clearance-side coefficient of friction, g can reach unexpectedly high
magnitudes (as high as 30,000!). Further research is needed to fully appreciate
the validity and implications of these observations.
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Consider now the prediction of shear angle that is of much significance in
downstream modeling activities aimed at predicting cutting temperature, tool
wear, etc. From this viewpoint, compare the ARFPE values of approaches Arl
and Ar3. The only difference between the two approaches is that the former is
based on measured shear angle values whereas the latter utilizes theoretically
estimated values obtained through the minimization of the variation of
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Armargeo’s work material invariant,z (recall MVMI). Note that the ARFPE
value for Ar3 (=0.36) is significantly higher than the figure (=0.17) achieved by
Arl. This suggests that ¢ values obtained from MVMI are superior to measured
values. This conclusion is reinforced every other time we replace the classical
approach with MVMI—compare the ARFPE values yielded by Ar2 with Ar4, by
R1 with that by R3, by R2 with that by R4, and by KT1 with that by KT3. This
conclusion is of much practical significance since shear angle measurement is a
process that is not easily automated.

Returning to our discussion of EDK1, clearly, the approach is useful if the
intention is merely to predict cutting forces. On the other hand, owing to its
‘mechanistic’ nature, it can only provide physical insights at level 1—it does not
give any information regarding the shearing phenomenon leading to chip
formation. However, the approach does yield the optimally partitioned rake and
clearance side forces. Hence, we may determine the shear angle from the rake-
side forces, fc,r and f7,, by adopting the previously described ELinSAS/MVMI
procedure where MVMI is implemented by minimizing the fractional variation
of either (EDK2) 7 or s (EDK3). Once, ¢ has been determined thus, it is an easy
step to estimate parameters such as rand s related to the shear plane/zone.

Figure 10 compares the ¢ values predicted by EDK2 and KT3 over dataset
1 with the corresponding measured shear angle values. Note that the
performance of EDK2 is significantly superior to that of KT3. The rms error of
3.8 {deg) resulting from EDK?2 is much smaller than the 11 deg. yielded by KT3.
The former figure is quite plausible when we keep in mind the previously
discussed practical errors and theoretical uncertainties associated with the
measurement of chip dimensions. Note also from Table 7 that EDK2 has
performed better than EDK3.
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Figurel 0. Correlation between predicted and measured shear angles.
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EDK2 and EDK3 involve optimum force partitioning through OFPT
followed by optimum shear angle selection through ELinSAS/MVMI. However,
it should be possible (at least in principle) to carry out the two optimization
procedures in ‘one shot’ so as to arrive at a more plausible shear angle
prediction. However, unfortunately, our attempts to implement such a ‘one shot’
procedure have met with convergence problems owing to the need for
determining a much larger number of model coefficients simultaneously. Further
research is required to resolve this issue.

CONCLUSIONS

Modeling approaches may be classified into three types. Level 0 models
merely facilitate cutting force prediction. Level 1 models enable cutting force
partitioning between the rake and, hence, provide insights regarding friction
conditions at the chip-tool and work-tool interfaces. Level 2 models provide
additional insights regarding parameters related to the shearing process that leads
to chip formation provided that empirical shear angle values are known. Level 3
models do the same but without the need for measuring shear angles. In contrast
to levels 0 and 1, levels 2 and 3 are capable of facilitating down stream modeling
activities directed towards the estimation of cutting temperatures, tool wear, etc.
ANN-based and empirical models are level 0 models. Analytical models provide
insights at level 1 and above.

The present paper has also compared two numerical functions called
UolFun and PowerFun that can be used to model cutting force related analytical
parameters. Regarding shear angle distributions, arguments have been presented
in favor of utilizing a new function called the extended linear shear angle
solution (ELinSAS).

In the absence of a ‘perfect’ dataset, it is impossible to assess a model’s
effectiveness with regard to cutting force prediction in an absolute manner.
Hence, a relativistic approach has been developed for estimating the ‘aggregate
relative force prediction effectiveness (ARFPE)’ of a given predictive model.

Traditional analytical models have all required chip dimensions to be
measured for the purpose of estimating the shear angle. Such measurement is not
casily automated and, hence, has become the greatest hurdle to enabling the
compilation of autonomous machining databases and cutting force prediction by
each individual machine on the shop floor. This problem has been resolved in the
present paper by ‘minimizing the variation of the notional work material
invariant (MVMI)’ in combination with ELinSAS and subject to Hill’s classical
constraints.

In all, two ANN-based (BPN and ANFIS) models, two empirical (UolFun
and PowerFun) models, and fourteen analytical models based on the cutting
theories of Armarego, Rubsenstein, DeVor and Kapoor, and Kobayashi and
Thomsen have been subjected to comparative assessment.
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The two ANN-based approaches have been found to outperform the
empirical and analytical models. When the dataset is large, ANFIS can perform
better than BPN.

Certain analytical models outperform empirical models although, like
ANN-based models, the latter are devoid of any physical insights and, hence, are
not limited by any erroneous assumptions regarding the physics of the process.

With regard to modeling of analytically determined process parameters,
PowerFun has outperformed UolFun.

With regard to schools of analytical modeling, that of DeVor and Kapoor
has outperformed much better, mainly because it uses an optimized force
partitioning technique. However, on its own, this model is unable to predict
shear angles.

With regard to analytical models at levels 2 and 3 that depend on
measured shear angles, the approach following the ideas of Kobayashi and
Thomsen has performed much better than those following the ideas of Armarego
and Rubenstein. The main reason for the poor performance of the latter
approaches seems to be that force partitioning via the assumption of a linear
cutting force versus cut thickness relationship leads to undue scatter in model
parameters.

The shear angle values estimated via ELinSAS and MVMI leads to much
superior cutting force predictions. This superiority is much more evident when
the datasets are large. Having arrived at a method for estimating shear angles
from cutting force data alone, each machine tool on the shop floor can now be
endowed with the ability to predict cutting forces on the basis of data collected
from its own normal shop floor experiences.

Several issues identified in the paper require further research. An example
is the need for carrying out in ‘one shot’ the optimization procedures directed at
force partitioning, and shear angle determination.
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