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ABSTRACT 
 

The relative force prediction abilities of some well-known ANN-based, empirical and 

analytical models are assessed against several independent datasets by taking the rms 

error of cutting and thrust forces over all the datasets as the criterion. Progressing beyond 

mere data analysis, attention is paid to issues concerning how the model parameters 

themselves could be numerically modeled. A methodology for avoiding the need for 

measuring the shear angle, , is also developed. Model coefficients are estimated through 

nonlinear constrained optimization techniques. For estimating , the fractional variation 

of an idealized material invariant such as the mean shear stress, , on the shear plane is 

minimized subject to Hill‟s classical constraints. Several hitherto unknown insights 

regarding the relative effectiveness of each of the models have emerged. For example, it 

is found that the -values estimated from the measured forces alone are superior to those 

determined from chip measurements in the traditional manner. 

 
 

NOTATION 

 

a  the first constant in LinSAS, deg. 

  chip load (cut area), m
2
 

As  area of shear plane, m
2 

(ARFPE)i  Aggregate Relative Force Prediction Effectiveness of model I 

b  the second constant in LinSAS 
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eij  rms force prediction error of model i over dataset j, N 

eijk  rms force prediction error of model i for record k of dataset j, N 

ELinSAS  Extended Linear Shear Angle Solution: LinSAS but with a 

                    and b expressed as Powerfuns 

fC , fT     total cutting and thrust force respectively acting on the tool, N 

fCcf , fTcf     clearance face cutting and thrust force respectively, N 

fCrf , fTrf       rake face cutting and thrust force respectively, N 

fCjk , fTjk          measured cutting and thrust force respectively in record k of dataset 

j, N 

fCijk,pr , fTijk,pr  predictions by model i of fC and fT corresponding to fCjk  and fTjk 

respectively, N 

Fcf                 clearance face friction force, N 

Frf                 rake face friction force, N 

Fs                  shear plane shearing force, N 

i  model index 

j  dataset index 

k  data record index within a given dataset 

Kcf  magnitude of Ncf for unit vi, N/m
3 

Krf  magnitude of Nrf for unit Ac, N/m
2 

LFPT  Linear Force Partitioning Technique 

LinSAS  Linear Shear Angle Solution of the form  = a – b(-) 
nm  number of models available, i.e., the maximum value of I 

nd  number of datasets available, i.e., the maximum value of j 

nrj  number of records in dataset j 

MVMI         Minimizing the Variation of the Material Invariant in the given 

model 

Ncf                clearance face normal force, N 

cfN
_

            magnitude of Ncf per unit wc, N/m 

Nrf                rake face normal force, N 

Ns                shear plane normal force, N 

O                 objective function 

OFPT          Optimized Force Partitioning Technique 

p                  penetration of a dull cutting edge into the work surface, m 

PowerFun    Power Function 

re                 tool cutting edge radius, m 

rms              root mean square 

(RFPE)ij      Relative Force Prediction Effectiveness of model i over dataset j 

s                  uniform shear stress on lower boundary of shear zone, Pa 

sDb               value of s stored in model coefficient database, Pa 

tc                 cut thickness, m 

UoIFun       University of Illinois Function  

vi                 clearance face interference volume, m
3 

V                 relative velocity between tool and workpiece, m/min 

wc cut width, m 

 rake face (tool-chip interface) friction angle, deg. 
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 tool rake angle, deg 

 cutting effectiveness (= ratio of minimum and actual cutting 

energies under identical cutting conditions) 

  shear angle, deg. 

LBjk,  UBjk lower and upper limits respectively on  for record k of dataset j 

m  shear angle determined from measured chip dimensions, deg. 

cf, rf  coefficient of friction at clearance face and rake face respectively 

 = -, deg. 

 mean shear stress on shear plane, Pa 

Db value of  stored in model coefficient database, Pa 

 a machining parameter (= Ac/fC) 

 

 

INTRODUCTION 

 

The current practice of relying on machining databases (e.g., [1]) for the 

purpose of anticipating process outputs such as cutting forces, temperatures, and 

tool life is highly unsatisfactory. A recurring theme at the CIRP-sponsored 

International Workshops on Modeling of Machining Operations being held since 

1997 concerns the urgent need for reliable and robust predictive models of 

practical cutting operations so as to avoid the need for very large machining 

databases. As a result, industrial and academic communities have collaborated 

through a project coordinated by the National Institute for Standards and 

Technology (NIST) of the USA so as „to assess the ability of state-of-the-art 

machining models to make accurate predictions of the behavior of practical 

machining operations based upon the knowledge of machining parameters 

typically available on a modern industrial shop floor [2].‟ There have also been 

suggestions to develop a „House of Models‟ consisting of models that are 

declared by CIRP to be „fit to use‟ in the metal cutting industry [3]‟.  

However, predictive modeling is not easy because machining processes 

continue to be poorly understood owing to the following reasons: the large 

variety of processes, input variables, internal variables, and output variables; the 

resulting large variety of chip types and forms; the high complexity of tool/work 

interface; the difficulty of determining work material properties at the extreme 

conditions prevailing in the cutting zone; the small scale of machining; and the 

fact that the process of chip formation is not uniquely defined [4]. 

The ability to anticipate the technological performance of manufacturing 

processes from different viewpoints is important in every process-planning phase 

(planning, monitoring, and control). Machining process performance measures of 

wide interest include cutting forces, power, temperatures, tool life, accuracy, and 

surface finish [5]. Of these, cutting forces are of particular importance since they 

influence the rest of performance measures strongly. For instance, while 

programming a computer controlled numerical (CNC) machine to produce a part 

of specified geometry and accuracy, knowledge of the likely magnitudes of the 
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quasi-static cutting force components along the machine axes is essential for 

ensuring that the torque/power capacities of the axis-drives are optimally utilized 

during roughing passes and that the cutter path is duly compensated during the 

finishing pass so as to achieve the desired part accuracy notwithstanding the 

geometric, thermal and force-induced deflection errors associated with the 

particular machining set up [6].  

A wide variety of machining operations are in industrial use today. It is 

unrealistic to seek to develop an independent model for each of these „practical‟ 

operations. It might be more reasonable to model each practical operation in 

terms of a common and simplified machining operation. Armarego (among a few 

others) has suggested that this should indeed be possible if one uses a model 

parameter database compiled on the basis of data collected from single edge 

orthogonal cutting experiments performed using the same work-tool material 

combination as used in the practical operation. Based on this premise, he 

systematically covered one practical machining after anothere.g., turning [7], 

end milling [8], and drilling [9].  

Approaches to cutting force modeling of single edge orthogonal cutting 

differ substantially. Many models express the cutting force components 

associated with each work-tool combination as explicit analytical functions of 

the input conditions (e.g., cutting speed, V; cut area, Ac, etc). A popular function 

is the power function where the function coefficients are determined through 

nonlinear regression performed against the measured cutting forces. The model 

coefficient database facilitates the prediction of the cutting forces likely to arise 

when a new set of cutting conditions is applied. Inevitably, since the exercise has 

to be repeated for each work-tool combination, this process requires a very large 

and expensive model coefficient database to be built. 

A general drawback of the empirical approach is that it treats the 

machining process as a black box. No prior knowledge concerning the physics of 

the process is assumed to be available. This scenario has changed substantially 

since the seminal works of Merchant [10, 11] who introduced certain physical 

principles related to the plastic deformation of metals. He idealized chip 

formation as a process resulting from shear at a single shear plane. Assuming 

that the work material is perfectly plastic, he considered the shear stress, , on 

the shear plane to be a work-material invariant. (This assumption is now 

generally recognized to be an oversimplification that does not explicitly take into 

account the implications of the possible triaxial state of stress and high strain 

rates encountered in metal cutting. However, Armarego [7] and a few others 

have observed that the assumption of  being constant for a given work material 

holds quite well provided that the total cutting force is properly partitioned into 

components arising from the specific phenomena occurring at the rake and 

clearance sides.) 

Subsequently, more complex physics-based models were developed for 

single edge orthogonal cutting. These models are commonly known as 

„analytical‟ models since they have been mainly used to analyze input-output 

relationships so as to gain a deeper understanding of the chip formation 
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mechanisms involved. Such an understanding is essential while conducting 

downstream exercises directed towards the estimation of cutting temperatures, 

tool wear, etc. The advantage of the „analytical‟ approaches “is that predictions 

are made from [certain] basic physical properties of the tool and workpiece 

materials together with the kinematics and dynamics of the process. Thus, after 

the appropriate physical data [are] determined, the effect of changes in cutting 

conditions (e.g., tool geometry, cutting parameters, etc.) on industrially relevant 

decision criteria (e.g., wear rate, geometric conformance, surface quality, etc.) 

can be predicted without the need for new experiments. If robust predictive 

models can be developed, this approach would substantially reduce the cost of 

gathering empirical data and would provide a platform for a priori optimization 

of machining process parameters based upon the physics of the system [2].” 

More recently, computational approaches based on finite element or 

finite difference techniques have been developed. However, a round robin 

exercise conducted by CIRP identified several unresolved problems with these 

approaches [4]. Hence, it is likely that, at least in the near time future, one would 

have to continue to rely on analytical models.  

Whenever we attempt predictive modeling of a machining operation, we 

are putting faith in the high likelihood of the cutting process being inherently 

repeatable. However, often, the facts are otherwise. For instance, consider the 

single edge orthogonal cutting data reported by Ivester et al. in 2001 to support 

the CIRP International Competition on „Assessment of Machining Models‟ [2]. 

The experiments were replicated at four different laboratories while utilizing 

tubular workpieces and tool inserts drawn from the same batches. Interestingly, 

although extraordinary care was taken while performing the experiments, there 

was significant variation (up to 50%!) in the ratio of the measured cutting force 

range across the four laboratories to the mean value.   

Hill was amongst the first to recognize the inherent variability of 

machining processes [12, 13]. In particular, he wondered why the extant theories 

of machining did not generally agree with experiments. Was it because the 

assumptions underlying the models were unrealistic? Or, was it because 

experimental techniques were inadequate? Or, were the theories unsound, even 

within their self-imposed limits? Hill focused on the last aspect by envisaging 

that “the possibility of uniqueness [in machining] is fruitless: that is, there may 

be many, even infinitely many, steady state configurations of a given type (e.g., 

with a single plane of shear or with a „false cap‟ of given shape adhering to the 

tool). Indeed, in a process such as machining where there is little constraint on 

the flow, it seems certain that the initial conditions must influence the ultimate 

steady state. Granted this, the logical approach to the problem is radically 

different. The ultimate objective now becomes not single unique solution, but a 

whole range of steady-state solutions of (let us say) the shear-plane type, each 

complete in the technical sense and each associated with a set (or sets) of initial 

conditions by an intervening nonsteady transitional flow [13].” Next, by 

excluding configurations that imply overstressing of materials at the singularities 

of stress within the deformation zone in machining, Hill arrived at permissible 
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ranges of shear angle, , in single edge orthogonal cutting as functions of rake 

angle, , and the apparent coefficient of friction, rf, at the rake face.  

If we accept Hill‟s views, the prospects of predictive modeling seem 

hopeless. Yet, the record shows that some models have been able to make fairly 

good force predictions in the context of certain datasets. For instance, a closer 

examination of the datasets reported in [2] indicates that the data from each 

individual laboratory are internally consistent to a fair degree. Yet, there are 

substantial differences between the force values measured by different 

laboratories. This may be explained by the fact that the initial conditions are 

strongly dependent on the machining setup used but, for a given setup, are 

reasonably repeatable over a limited period. Indeed, there is some hope for 

predictive modeling of cutting forces!  

Among the analytical cutting force models directed towards single edge 

orthogonal cutting operations resulting in continuous chips without the formation 

of a built-up-edge (type II chips), the models developed by Armarego [7], DeVor 

and Kapoor [14, 15], Kobayashi and Thomsen [16-19], Oxley [20-23], and 

Rubenstein [24, 25] are particularly noteworthy.  

However, generally, these modelers had used their own specifically 

collected data to validate their specific models. This raises two concerns. Firstly, 

there is always the possibility of experimental bias in favor of the model being 

validated. Secondly, it is not unreasonable for the modeler-experimenter to select 

experimental conditions that are likely to result in a cutting process that ensures 

as much agreement as possible between the process-related assumptions that the 

modeler had made and the actual process. For instance, input conditions might 

have been selected to ensure type II chips. This is acceptable if the objective is 

just to validate the model, but not for the purpose of predictive modeling. One 

would like the model to be reasonably robust, i.e., work in an adequate manner 

under shop floor conditions where it is quite possible to encounter a wide variety 

of chip-states (including and beyond type II).   

It follows from the above discussion that, from a predictive modeling 

perspective, it is highly desirable to make a comparative assessment of all 

credible cutting models against a common (and large) collection of 

independently compiled datasets. However, to date, no such exercise has been 

undertaken. An objective of this paper is to fill this gap. In the present work, 

twelve distinct datasets drawn from literature are utilized for the purpose of 

assessing two artificial neural network-based approaches, two empirical 

modeling approaches, and fourteen analytical approaches inspired by the works 

of Armarego, DeVor and Kapoor, Kobayashi and Thomsen, and Rubenstein.  

This paper proceeds beyond mere model assessment by pursuing two 

further objectives. The first is motivated by the observation that almost all 

currently available analytical cutting models assume that each data record 

includes, in addition to the cutting force magnitudes, the value of the shear 

angle, . 

Cutting force measurement is usually not a problem. For instance, as 

noted by the present authors in [26], cutting force monitoring is easily automated 
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by sensing machine axis motor currents with the help of Hall-effect sensors. In 

contrast, traditional methods of estimating  involve some manual dimensional 

measurement of chips. This is a process that is tedious, expensive, prone to 

significant error, and difficult to automate Clearly, the need for measuring  is 

the greatest single obstacle to the assimilation of cutting force models in 

industry. However, very few modelers (with the rare exception of [19]) have 

addressed this issue. This paper proposes a new method of estimating  solely 

from measured forces corresponding to known input conditions. The method 

utilizes a new principle called MVMI (Minimize the Variation of the Material 

Invariant) subject to Hill‟s classical constraints on  [13] for a given work 

material.   

The second objective is motivated by the observation that many of the 

currently available models have been configured mainly to enable analyses of 

individual data records (input-output combinations) to arrive at sets of model 

parameters that are plausible when exactly those input states are present. Next, 

the patterns implicit in the model parameters are approximated by explicit 

analytical functions (e.g., the power function). These functions are then utilized 

for the purpose of cutting force prediction for a new input condition. However, it 

can be anticipated that different functional relationships will result in different 

degrees of distortion. Hence, this paper includes a comparative assessment of 

some functions suitable for storing model parameter patterns. The next five 

sections discuss some issues of common interest to all predictive modeling 

approaches examined in the present work. 

 

LINEAR AND OPTIMIZED CUTTING FORCE PARTITIONING 

 
Early modelers of machining operations had assumed that the cutting tool 

was perfectly sharp (e.g., [10.11]). Hence the measured cutting forces, fC and fT, 

could be attributed entirely to chip formation. Subsequent researchers (e.g., [7, 

24]) argued that practical cutting tools are always dull, i.e., their cutting edges 

would be rounded and possibly exhibit a flank wear land. Owing to the 

roundness of the edge, the local rake angles in the vicinity of the work surface 

would be highly negative so that it becomes easier for some of the work material 

approaching the rounded edge to be extruded towards the workpiece instead of 

moving over the rake face as a part of the chip. This process would give rise to 

parasitic forces (i.e., to forces that do not directly arise from chip formation) on 

the clearance face side of the tool (Figure 1). In short, it is necessary to partition 

the total forces into those on the rake side, fCrf and fTrf, and those on the clearance 

face side, fCcf and fTcf. Hence, only the rake side forces should be used while 

performing an equilibrium analysis of the chip. Otherwise, there would be 

significant errors. 
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Figure 1. Single edge orthogonal cutting. 

 

There exist several alternative approaches to solving the force-partitioning 

problem. Armarego and Rubenstein (among others) presented empirical evidence 

suggesting that, as an approximation, both fC and fT can be taken to be increasing 

in a linear fashion with cut thickness, tc when other conditions remain the same 

[7, 24]. The linear regression lines for fC and fT usually have positive intercepts 

along the respective force axes and these intercepts may be taken to be equal to 

fCcf and fTcf respectively. The rake side force components can then be estimated as 

fCrf = fC  - fCcf and fTrf = fT - fTcf. In the rest of this paper, we will refer to this force 

partitioning procedure as LFPT (the Linear Force Partitioning Technique). 

A radically different approach to force partitioning has been developed 

more recently by Endres, DeVor and Kapoor [14, 15]. The parasitic forces on the 

clearance side arise mainly because of the penetration of the rounded cutting 

edge into the work material (see Figure 1). This results in certain „interference 

volume,‟ vi, between the tool and the workpiece, the magnitude of which is 

easily calculated once we assume a certain „penetration depth‟, p, of the dull 

edge into the work surface. Endres et al. then develop an expression for vi in 

terms of p, re, and the tool clearance angle. Next they express Krf, rf, cf, Kcf, and 

p in terms of input conditions (, tc, and V) using the following functional form 

(explanations of these symbols are provided in the Notation section):  

4321 )(
var model

x
Vx

ct
xx

eiable


                                                  (1) 

subject to a plausible set of constraints on the coefficients, x1 to x4, 

corresponding to each of the modeled variables. In the rest of the present paper, 

we will refer to the functional form contained in equation 1 as „UoIFun‟, i.e., the 

University of Illinois Function, signifying the affiliation of its principal 

proponents. Next, the magnitudes of the twenty model coefficients are 

determined by following a „multi-level, multi-pass iterative calibration 

algorithm‟ that seeks to minimize the total error of machining force predictions. 

The procedure is more easily applied when the input dataset is relatively small in 

size [27].  

After applying their force partitioning procedure to a selection of sixteen 

data records from the dataset reported in [28] for SAE 1112 „as received‟ steel, 

Endres et al. arrived at several conclusions that did not agree with those of 
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Armarego and Rubenstein. In particular, they observed that, for the same tool 

(i.e., a tool with apparently the same cutting edge radius), „increasing the chip 

thickness strongly increases the thermal energy generated and hence transferred 

to the workpiece surface. This is reflected by increased tool penetration 

dominating over the decreased resistance to such penetration, which causes the 

clearance face forces to increase substantially with chip thickness [15].‟ An 

implication of this observation is that the assumption of the linear force-tc 

relationship that underpins LFTP cannot be generally valid.  

Although it was not highlighted in their publications, a major drawback of 

the force partitioning approach of Endres et al. is that it requires prior knowledge 

of the cutting edge radius, re. The determination of this tool characteristic is 

extremely tedious, error prone, and difficult to automate. For the approach to 

succeed in an industrial setting, it is essential to overcome this difficulty. With 

this objective, the present authors have modified the approach of Endres et al. in 

the following manner: 

 Model Krf, rf, cf, and cfN
_

. (Instead of modeling Kcf as in [14,15], we model 

cfN  so as to avoid the need for knowing re.)  

 We now have only sixteen parameter function coefficients to determine 

instead of the original twenty. In principle, these sixteen coefficients may be 

estimated using a numerical procedure analogous to the multi-level, multi-

pass iterative process detailed in [27]. However, it appears possible to solve 

the problem more elegantly by applying certain well-known techniques of 

constrained nonlinear optimization. In particular, we have found it 

convenient to use the Interior Point and Exterior Point Penalty Function 

Methods described in [29]. Several mathematical software packages  (e.g., 

MATLAB) have a library of standard routines to execute such optimization. 

The objective function to be minimized is still the total force prediction error 

over all the data records in the given dataset. Likewise, the constraints used 

by Endres et al. on the model parameter function coefficients are retained. 

In the rest of the present paper, we will refer to the above modification of the 

method of Endres et al. as the OFPT (Optimized Force Partitioning Technique).   

Before leaving the subject of force partitioning, it is necessary to stress 

that not all cutting modelers find it necessary to partition forces. For instance, 

Kobayashi and Thomsen [16-18] suggest that the magnitude of the shear stress 

on the shear plane, , may be taken as the slope of the linear regression line 

between the shear plane shearing force, Fs, and shear plane area, As. They also 

make the empirical observation that this regression line usually has a positive 

intercept, Fs0, on the Fs–axis. However, although Kobayashi and Thomsen were 

aware that this intercept could be explained via the „ploughing‟ effect arising 

from a dull cutting edge, they attributed it to „size effect‟ and/or the possibility 

that the “shear plane area [being] actually larger than that determined from chip 

measurements because of the fact that some bulging occurs at the free surface of 

the chip where the shear plane terminates. This bulging is described as flow 

ahead of the shear plane [16].” 
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NUMERICAL MODELING OF CUTTING FORCE MODEL PARAMETERS 

 
An attractive feature of the cutting force model developed by Endres et al. 

[14, 15] is that, right at the beginning, the parameters such as Krf, rf, cf, and Kcf 

that are essential during the subsequent force prediction phase are expressed as 

UoIFuns and the corresponding coefficients for each work-tool material 

combination stored in a database to facilitate subsequent force prediction  

In contrast, the published works of most other modelers (e.g., Kobayashi, 

Armarego and Rubenstein) do not explicitly clarify how their respective cutting 

force model parameters may be expressed as functions of input conditions. They 

simply present their data analysis methods that yield arrays of individual values 

(instances) of the model parameters. By themselves, such arrays do not enable 

prediction except when the input conditions are identical. When the new input 

conditions are different, one has to interpolate/extrapolate by recognizing the 

patterns embedded within the parameter values. This requires the parameter 

arrays to be modeled using a suitable analytical function. One way is to use 

UoIFun (see equation 1). Another is to use a power function such as the 

following (called PowerFun): 

432 )2/π(1 varmodel
xx

Vx
ctxiable                                            (2) 

Note that the inclusion of the „/2‟ term in equation 2 ensures discrimination 

between the effects of positive and negative magnitudes of . 
Would these parameter-modeling strategies be equally effective in terms 

force prediction accuracy? This is a question that has not received sufficient 

attention so far. This issue will be discussed later. 

 
 

EXTENDED SHEAR ANGLE SOLUTION 

 

While implementing modeling approaches such as those due to Armarego, 

Rubenstein, and Kobayashi for the purpose of force prediction, it is necessary to 

model not only parameters such as rf, cf, and cfN
_

but also the measured shear 

angle, m. Whatever model we use, we would like the model estimates of m to 

be close to the corresponding raw m values. However, this does not appear to be 

a straightforward task. 

Consider Figure 2 showing the results of expressing m as a PowerFun. 

The data are taken from the 188 data records compiled from single edge 

orthogonal cutting experiments performed using 18-4-1 HSS tools on SAE 1112 

„as received‟ work material [28]. Clearly, the result is unsatisfactory. While we 

would like to see a linear regression line with its slope close to unity and 
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intercept close to zero, the actual regression line is highly nonlinear. We 

obtained similar negative results when we adopted UoIFun. 
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Figure 2. Effectiveness of modeling  as PowerFun 

(Data from [28], SAE1112 as received, 18-4-1 HSS, Approach Ar1 from Table 4). 

 

In classical orthogonal machining literature, linear shear angle solutions 

(LinSAS) of the following general form have often been used with some degree 

of credibility: 

0.5b ,o45a ),b(-a                                                 (3) 

where a and b are appropriate constants,  is the tool-chip friction angle and  is 

the rake angle.     

For instance, Merchant [11] developed his first shear angle solution by 

invoking the principle of minimum energy in conjunction with his idealization of 

orthogonal cutting as a shearing process occurring over a shear plane in the 

presence of a perfectly sharp cutting edge.  This approach resulted in the 

LINSAS with a=45
o
 and b=0.5. However, this solution was not found to be in 

general agreement with empirical datanot necessarily because the principle of 

minimum energy is inapplicable but because the principle is applied in 

conjunction with an erroneous or oversimplified cutting model (e.g., the 

assumption that shear occurs over a single shear plane). 

To appreciate the effectiveness of equation 3, consider Figure 3 where, for 

the same data as used in Figure 2, m is plotted against (-) obtained via LFPT. 

Clearly, drawing a single straight regression line to determine the most 

appropriate values of a and b will lead to highly unsatisfactory results.  
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Figure 3.  (-) from LFPT versus m plot (Data: same as in Figure 2). 

 

However, a closer examination of the data-points in Figure 3 reveals that 

they could be partitioned into three subsets each exhibiting a separate but 

approximately linear regression. This insight suggests that the linear shear angle 

solution could be „extended‟ by expressing constants a and b as independent 

functions such as PowerFun. However, since tc usually has negligible influence 

on the shear angle, we may ignore the tc-terms in the two PowerFuns. Based on 

these observations, we now propose the following generalized form of the 

extended linear shear angle solution (ELinSAS):  

ELinSAS: )()2/π()2/π( 6532
41  

xxxx
VxVx                       (4) 

Figure 4 shows the effectiveness of applying ELInSAS to the data in Figure 2. 

Comparing it to Figure 2, it is clear that ELinSAS has yielded a substantially 

improved result. 

 

SIDESTEPPINGTHE SHEAR ANGLE PROBLEM THROUGH ‘MVMI’ 

 

A major difficulty with most analytical models of cutting is that their 

application requires the magnitude of the shear angle, , corresponding to each 

data record to be known in advance. Usually, this is achieved through 

measurements of chip thickness, length, or weight. In any case, certain 

dimensional measurements performed on flattened chips cannot be avoided. 

However, dimensional measurement of a chip is a tedious process that is not 

easily automated. The significant manual effort required and the fact that the 

chip surface is usually quite rough makes the process highly error prone.  
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Figure 4. Effectiveness of the extended linear shear angle solution 

(Data: same as for Figure 2). 

 

The shear angle problem may be solved by utilizing some plausible 

physical principles to develop a „shear angle solution‟ expressing  as a function 

of some process parameters that can be directly computed from measured forces. 

For example, provided that we know the magnitudes of constants a and b, we can 

estimate the shear angle from the friction angle by using the linear shear angle 

solution described in equation 3. Over the last five decades, some fifty odd shear 

angle solutions have been developed. However, two problems remain. Firstly, 

the range of application of each shear angle solution seems to be limited. A 

given solution may work on some datasets but not others. Secondly, the solution 

coefficients still need to be calibrated against measured shear angles (as in the 

case of LinSAS as well as ELinSAS referred to in the previous section). Clearly, 

it is essential that we find a way of sidestepping the problem of shear angle 

measurement entirely.  

Cumming et al. seem to be among the very few who have come close to 

sidestepping the problem. In [19], they argued that, quite frequently, fT is found 

to be linearly related to fC so that  can be estimated by minimizing the overall 

deviation between the actual values and the values expected from the linear 

relationship. Thus, it was concluded that „no reference need be made to the 

actual angle , and better equivalent angles are determinable if a stiff but 

sensitive dynamometer is available.‟ Cumming et al. also outlined a more 

generalized quadratic fT versus fC relationship but did not demonstrate its 

implementation.  

The key idea behind Cumming‟s approach consists of two steps. Firstly, 

based on plausible physical considerations, we identify a relationship among one 

or more key process variables that is likely to generally hold, i.e., remain 

invariant. Next, we determine the distribution of  that minimizes the deviations 

(variance) from this relationship over all the data records under consideration.  
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An analytical modeler usually strives to arrive at generalizations that are 

expected to hold over a wide range of input conditions. Some generalizations are 

expected to hold for a particular work-tool material combination. Others are 

expected to hold irrespective of the tool material and cutting conditions as long 

as the work material remains the same. It appears that the most general (hence, 

the most „invariant‟) among these is the work material related invariant. On this 

basis, we suggest that it should be possible to arrive at a likely distribution of 

shear angle simply by minimizing the fractional variation (the ratio of the 

standard deviation to the mean value) of the most significant work material 

„invariant‟ involved in the model. Henceforth, we shall refer to this procedure as 

MVMIMinimizing the Variation of the Material Invariant in the given model.  

For instance, in the context of Armarego‟s approach, MVMI takes the 

following form. First, we apply LFTP to determine fCrf, fTrf, fCcf, and fTcf values for 

each record k of dataset j. Next, we determine rf, cf, and cfN  for all data 

records in the dataset. These values are then modeled using separate UoIFuns or 

PowerFuns through numerical nonlinear regression. Thus, 34=12 model 

parameter coefficients would have been determined at this stage. Next, we 

determine  = arctan(rf) for all data records in the dataset. It is assumed that the 

-distribution across the dataset follows a single ELinSAS so that there will be 

six additional coefficients to be estimated. Next, we compute the lower and 

upper limits, LBjk and UBjk respectively of  for each record k in dataset j using 

the equations developed by Hill in [13]. (The constraints placed on possible 

values of  merely ensure that the optimization procedure does not converge to 

an unrealistic value of , e.g.,   0. Once, the extreme value has been avoided, 

the limits chosen have little influence on the value of  to which the process of 

MVMI converges. It has been found that one can arrive at the same optimized 

values by using a different but plausible set of constraints on .) 

Finally, we perform the nonlinear least squares optimization using the 

Exterior Point Penalty Method [29] that minimizes the following objective 

function, O:  
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where jk is the estimate of  for record k in dataset j, K is a penalty constant 
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LBjk and UBjk are the lower and upper limits respectively on  for record k in 

dataset j, LB  is equal to 0 if jk LB, else it is equal to 1, and UB  is equal to 0 if 

jk LB, else it is equal to 1. 
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In contrast, Kobayashi and Thomsen‟s shear plane-based models of 

orthogonal cutting do not require force partitioning as a prerequisite for 

determining  [16-19]. For a given dataset with constant work-tool material 

combination,  is determined as the slope of the regression line between the 

shear force on the shear plane, Fs, and the area of shear plane, As. This  is the 

work material invariant in this model. Hence MVMI for this model may be 

implemented by following essentially the same procedure as that described 

above for Armarego‟s model except that, while implementing MVMI, the scatter 

of the data points with respect to the Fs versus As regression line is minimized. 

Notwithstanding the popularity of the shear plane approach, it must be 

emphasized that the notion of shear plane is only an approximation. Once we 

recognize a shear zone of finite thickness, shear strain rate and temperature 

would vary gradually across the shear zone. As a result,  could also vary across 

the shear zone. In other words, a single value of  might not suffice to 

characterize the influence of the work material on the cutting force magnitudes. 

Among the foremost practitioners of this approach are Oxley and his associates 

[20-23] who have moved away from the simplistic and semi-empirical view of 

constant  by considering a host of variables associated with the shear zone of 

finite thickness and the tool-chip interface. 

From the viewpoint of force prediction under shop floor conditions, shear 

zone-based approaches such as that of Oxley are difficult to implement. They 

require prior knowledge of several work material related parameters that are 

difficult to evaluate. This has to be done for each and every work material 

encountered on the shop floor. Besides, we have found it difficult to implement 

some of our optimization strategies (to be discussed later) in association with 

such shear zone based analyses. For these reasons, in the present paper, we have 

not attempted to assess the models developed by Oxley and his associates. We 

leave this issue to future researchers. 

However, there is empirical evidence suggesting that, in many cutting 

situations, shear zone thickness decreases with increasing cutting speed (modern 

machining practice is tending towards higher and higher cutting speeds), so the 

shear zone can be assumed to be „thin‟ and, hence,  may be taken to be the 

model invariant.  

In Rubenstein‟s approach [24, 25], the shear flow stress, s, along the lower 

boundary of the shear zone is the work material invariant. Rubenstein recognizes 

that there must always be a shear zone of finite thickness and assumes that the 

„lower‟ boundary (the boundary away from the chip-side) of the zone is a slip 

line. He then presents arguments leading to the conclusion that, irrespective of 

the normal distribution on the lower boundary and whatever be the friction 

conditions at the tool-chip interface, s can be simply calculated in single edge 

orthogonal cutting as 

)}1(cot/{  cACrffs                                                                  (6) 

Note that the above equation includes  merely for the purpose of enabling 

the results to be presented in a simple manner. Note also that, in contrast to the 

shear plane located somewhere in the middle of the shear zone, the lower 
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boundary is at the initial end of the shear zone. Hence, unlike , s should remain 

unaffected by the strain distributions within the shear zone although some 

temperature influence could still be present. Hence, s is the material invariant in 

this model. The major advantage of Rubenstein‟s approach is that, in contrast to 

, s can be determined without any reference to the friction coefficient, rf, at the 

tool-chip interface and solely from fCrf and . The disadvantage is that only fCrf 

can be predicted and we need to invoke some other method to predict fTrf. 

 
AGGREGATE RELATIVE FORCE  PREDICTION   EFFECTIVENESS OF 

A MODEL 

 

We may take the root mean square (rms) of the deviations between the 

predicted and measured forces as a measure of the prediction error of the model 

over the dataset. Thus, 
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Note that the above error estimate arises due to two reasons: data errors, 

and modeling errors. Data errors can be classified as those due to assignable 

causes (e.g., the dynamometer has not been properly calibrated, or an inadequate 

chip measurement technique has been applied) and random errors due to 

unknown causes. Likewise, modeling errors can be of different types. Firstly, not 

all the model assumptions might not be valid in the particular machining context. 

For instance, whereas the model has assumed type II chips, the actual chips 

might not be fully continuous. Or, there could be a built-up-edge present. Or, 

while the model assumes a thin shear zone to be present, the actual shear zone 

might be quite thick. Secondly, even though the model assumptions have been 

fully satisfied (a rare occurrence), the physical principles on which the model is 

based might be flawed to some degree. The model parameter estimates obtained 

from the data analysis phase would be that much in error. Thirdly, even if the 

model parameters have been estimated reasonably accurately, there could be 

varying degrees of error caused while we numerically model the parameters. We 

must remember that there is no specific physical basis underlying UoIFun, 

PowerFun, or ELinSAS. These functions might not always be capable of 

capturing fully the regularities implicit in the corresponding model parameter 

distributions. It is also possible that different kinds of regularities exist across 

different subsets of the same dataset. For instance, model parameter behavior at 

higher speeds could be very different from that in a lower speed range. Yet, we 

are trying to model both parts of the dataset using the very same functional form. 
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Finally, there is the possibility of the initial conditions being different across the 

dataset (recall Hill‟s arguments [13]) and the modeling procedure is unable to 

take into account the influence of variations in initial conditions.  

We could assess a model in an absolute sense only when we have a dataset 

that is totally free of experimental errors. Our problem is that we can never hope 

to have such a „perfect‟ dataset. Alternatively, if we have a „perfect‟ model in 

hand, the eij estimate resulting from this „perfect‟ model would entirely be data 

error. We would then know the variance due to data error. When we are 

assessing a different and less than perfect model, we can subtract the variance 

due to data error from the total variance so as to arrive at the corresponding 

variance due to modeling error. Again, our problem is that we could never hope 

to have a „perfect‟ model available.  

Clearly, the only recourse we have is to adopt a „relativistic‟ approach. 

When we compare the performances of a set of imperfect predictive models over 

a specific imperfect dataset, the data errors are common across all model 

implementations. One of these model implementations would be the „closest‟ to 

the unknown „perfect‟ model. We may use (quite arbitrarily) this „closest „model 

as the reference against which rest of the models are evaluated. The advantage of 

this approach is that, although we are unable to quantify the degree of perfection 

of a given model in an absolute sense, we will still be able to rank the available 

models in the order of their closeness to perfection. 

Based on the above rationale, the following procedure is proposed for 

assessing the aggregate relative force prediction effectiveness (RFPE) of a given 

modeling approach:  
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Note that the RFPE-values are meaningful only in the context of the specific sets 

of models and datasets over which the assessment exercise has been conducted. 

This must be borne in mind while drawing generalized conclusions from such an 

assessment exercise.  

The above feature also highlights the futility of trying to build a “House of 

Models [3]” that exists on its own. As in much of nature, in the context of 

machining models too, „fitness for purpose‟ is not universal. Since the work-tool 

material combinations normally encountered by different machines operating in 

different shop floors are likely to be quite diverse, one cannot expect the same 

predictive model to emerge as the „winner‟ in every machining situation. 

Likewise, the initial conditions and ranges of cutting conditions could be quite 

different. Therefore, it is better to equip each shop floor machine with force 

prediction software that compares the performance of several competing models 
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from data that are continuously gathered by the specific machine. Each machine 

should be allowed to „discover‟, in a Darwinian fashion, the model that has the 

„best fit‟ with the environment in which it normally operates. However, if we 

insist on building a “House of Models” so as to promote the development of 

improved models, we would have to build a companion „House of Data‟ too so 

as to act as a reference. One cannot exist without the other.  

 

 

DATASETS 

 

Table 1 details the twelve datasets used in the present comparative 

assessment (i.e., nd = 12). Note that the order of datasets in the table has no 

significance.  With 188 records, dataset 1 is the largest in Table 1. Eggleston et 

al. had collected these data in 1959 for the purpose of testing several shear 

angle solutions available at that time [28]. They appear to have been quite 

meticulous in measuring chip dimensions for the purpose of estimating . Their 

data indicated that LinSAS is only approximately satisfied and not all  values 

fell within Hill‟s limits. However, these observations were based on an analysis 

that had not invoked partitioning of the total forces between the rake and 

clearance sides. The way force partitioning is effected could result in different 

 values and, hence, in a different degree of agreement. 

Datasets 6, 7, and 8 were collected by Ivester et al. in 2002 to support 

the CIRP International Competition on „Assessment of Machining Models [2]‟. 

The experiments were replicated at four different laboratories with each 

laboratory using a different machine but utilizing workpieces and tool inserts 

drawn from the same batches. However, the input conditions spanned by each 

laboratory were not identical. Further, although great care was taken while 

performing the experiments, there were substantial differences in the fC and fT 

values recorded for nominally identical input conditions at different 

laboratories. For instance, for one particular input state, fC was measured to be 

580N by one laboratory and 980N by another laboratory! For this reason, while 

compiling the data records in datasets 7 and 8, we have used the average values 

of measured forces across the four laboratories. Further, the measurements of 

cutting forces and of shear angles were not conducted simultaneously, but with 

different input conditions at different times. Consequently, it could not be 

ensured that the initial conditions prevailing during the two exercises were the 

same. In view of these problems, we have ignored the shear angle values 

provided in [2]. As a result, we have been unable to assess modeling 

approaches Ar1, Ar2, R1, R2, KT1 and KT3 over datasets 6, 7 and 8 (see 

Tables 3 to 6). 
 

Table 1. Dataset details.  

 
j 

 
Reference. 

Work 
Material 

Tool 
Material 

 
deg V 

m/min 

tc 

mm 
wc 

mm 
nrj 
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1  
 
 
 
 

Eggleston 
et al. 
[28] 

SAE  
1112 

as 
received 

 
 
 
 
 

18-4-1 
HSS 

 
 

5 to 
40 

 
 

10 to 
52 

 
 

0.05 
to 

0.25 

 
 
 

5.1 

 
188 

2 SAE  
1112 

annealed 

 
78 

3 2024 T4 
Al 

175 to 
240 

93 

4 6061 T6 
Al 

 
20 to 

40 

175 18 

5  
Brass cd 

 
144 

0.05-
0.28 

4.6 49 

6  
 
 

Ivester 
et al. 
[2] 

 

 
 
 

AISI 1045 
steel 

 
K68 

carbide, 
uncoated 

 
 

-7 
 

to 
 

+5 

 
 

200 
to 

300 

 
 

0.15 
to 

0.30 

 
 
 
 

6 
 

9 
(Lab 

1) 
7 52 

(Labs 
1-4) 

8 K68 
carbide, 
Coated 

56 
(Labs 
1-4) 

9 Lapsley 
et al. 
[31] 

Steel ar HSS 25 
to 
45 

 
27.4 

0.06 
to 

0.22 

 
12.1 

 
20 

1
0 

Kececioglu 
[32] 

SAE1015 
118 BHN 

steel 
cutting 
carbide 

-10 to 
36.5 

38 to 
227 

0.1 
to 
0.3 

 
4.3 

22 

1
1 

Merchant 
[12] 

NE9445 
steel 

carbide -10 to 
10 

60 to 
361 

0.02 
to 
0.2 

 
 
 

6.35 

15 

1
2 

Crawford & 
Merchant 

[33] 

SAE1020 
hot rolled 

18-4-1 
HSS 

0 to 
50 

19 to 
159 

0.16 24 

 
Dataset 9 was collected by Lapsley, Grassi and Thomsen in 1950 [31] 

for the purpose of correlating plastic deformation of the work material in 

cutting with that under pure tension. Dataset 10 was collected by Kececioglu in 

1958 for testing some prevailing models [32]. Datasets 11 and 12 were 

collected by Merchant in 1945 and 1953 respectively. The former was used by 

Merchant to demonstrate his chip-equilibrium model and his first shear angle 

solution. The dynamometer used in either case was of a primitive type using 

dial gages. Hence, one should be cautious in drawing generalizations from 

these two datasets. 

Note that, in contrast to datasets 1 to 3, datasets 4 to 12 are quite small in 

size. We would like to model the influence of at least three variables (V, tc, and 

) on cutting force magnitudes. One may also assume that the effects of each of 

these variables would be nonlinear in nature. Further, the process of 

determining model parameter coefficients in our procedure involves statistical 

nonlinear regression. Likewise, when we estimate shear angles via our MVMI 

procedure, we need to employ a nonlinear constrained optimization procedure. 

Both these procedures work more robustly and converge with greater ease 

when nrj is large.   
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It follows from the above discussion that it is more desirable to work 

with larger datasets rather than smaller ones. But, large datasets are expensive 

to compile in a laboratory setting that depends on manual chip measurements 

to estimate . Here lies the importance of the MVMI approach. 

The realization that large datasets could facilitate predictive modeling of 

cutting operations is not immediately evident from cutting literature. For 

instance, as recently as in 1995, Endres et al. [14, 15] validated their modeling 

approach against a selection of just 16 data records drawn from the 188 data 

records available in Eggleston‟s 1959 data (dataset 1 in Table 1). The reason 

cited was computational efficiency.  

 

FORCE PREDICTION USING ARTIFICIAL NEURAL NETWORKS 

 

An analytical cutting model captures the patterns implicit in a given 

dataset by attempting to relate them to certain widely accepted principles of 

science. This approach is distinct from pattern recognition using an artificial 

neural network (ANN). An ANN is not equipped with any scientific knowledge. 

It is merely an algorithmic procedure that  (hopefully) is capable of recognizing 

patterns implicit in a given set of data irrespective of their originbased on 

process-physics, or otherwise. On the other hand, the advantage of using ANN-

based modeling is that no assumptions need be made regarding the physics of the 

process. Hence, provided that a reasonably effective ANN algorithm has been 

used, we can expect the eij estimate from an ANN to be significantly smaller than 

that arrived ay by an analytical model that, somehow, has to make the „right‟ 

physical assumptions and use the „right‟ scientific principles. In short, ANN-

based modeling should be of help in arriving at the smallest possible estimate of 

eij.   

In view of the above considerations, two ANN strategies have been 

implemented in the present work. Approach BPN uses a back propagation 

network (BPN)see MATLAB 6.1 neural Network Tool Box for detailsusing 

three input nodes (V, Ac, and ), four hidden nodes, and two output nodes (fC and 

fT). 

The second is an adaptive neuro-fuzzy inference system (ANFIS).   

ANFIS is a four-layer neural network that simulates the working principle of a 

fuzzy inference system [34-36]. Our ANFIS had two hidden layers of six nodes 

each. The input and output layer configurations were the same as in the BPN 

implementation.  

 
 
 
 

PREDICTIVE MODELING: EMPIRICAL AND PHYSICS-BASED 
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While our primary interest is in cutting force prediction, we would also 

like to gain some physical insights into the process of chip formation that are 

useful in subsequent modeling of cutting temperatures, tool wear, etc. In 

particular, three types of additional physical insights are possible: (i) insights 

regarding how the total cutting forces are partitioned and, hence, of the 

magnitudes of normal and friction forces acting at the chip-tool (rake side) and 

work-tool (clearance side) interfaces; (ii) insights regarding the shearing process 

(e.g., knowledge of the work material invariants such as  and s) provided that  

has been empirically determined. Hence, these are also at level 0.  

Tables 2 to 6 summarize the equations used in the data analysis (column 

2), parameter modeling (column 3), and prediction phases (column 4) of the two 

empirical and fourteen analytical modeling approaches that we have assessed so 

far.  

 

Table 2.  Implementation details of purely empirical modeling approaches.  

Appr. Data analysis 

equation sequence 

Modeling and Db Prediction equation 

sequence 

EU 
Frf= fCrfsin+ fTrfcos 

Nrf= fCrfcos - fTrfsin 

Krf  = Nr,/Ac 

rf  = Frf/Nrf 

Krf, rf : UoIFun 

(Physics level: 0) 
Nrf=Krftcwc 

Frf =rf Nrf 

fC= Frfsin+ Nrfcos 

fT= Frfcos - Nrfsin 

EP 

 

Krf, rf : PowerFun 

(Physics level: 0) 

 

 

Table 3.  Implementation details for approaches inspired by the analytical models of 

Kobayashi and Thomsen [16-18].  

Appr. Data analysis 

equation sequence 

Modeling and Db Prediction 

equation sequence 

KT1 
Ac=wc tc 

As= Ac/sinm 

Fs = fC cosm - fT 

sinm 

frf = fC sin + fT 

cos 

Nrf = fC cos-fT sin 

rf=Frf /Nrf 

Regress Fs against As. 

Db=regression line slope. 

Fs0Db=regression line intercept. 

ELinSAS(m)  

rf : UoIFun 

(Physics level: 2) 

=DbAc/fC 

=arctan(rf) 

=- 

=+ 

={sin(2+)-

sin}/(1-sin) 

fC={DBAc+Fs0Dbsi

n)/}{2cos /(1-

sin)} 
KT2 

Same as for KT1, except  that 

rf : PowerFun 

(Physics level: 2) 
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KT3 
For each iteration, 

assume ELinSAS 

coefficients and find 

trial . 

Now follow 

procedure for KT1 

and KT2 but using  

for m. 

ELinSAS(min scatter(Fs vs As 

regression line). 

Regress Fs against As. 

Db=regression line slope. 

Fs0Db=regression line 

rf : UoIFun 

(Physics level: 3) 

fT= fCtan 

 

Table 4.  Implementation details for approaches inspired by the analytical model of 

Armarego [7].  

Appr. Data analysis equation 

sequence 

Modeling and Db Prediction 

equation sequence 

Ar1 OFTP: Perform linear 

regression of  fC  and fT 

against tc. Intercepts are 

fCcf  and fTcf. 

fCrf= fC- fCcf 

fTrf= Ncf=fT - fTcf 

Ac=tcwc 

As=Ac/sinm 

Frf= fCrfsin+ fTrfcos 

Nrf= fCrfcos - fTrfsin 

Fcf  = fCcf  

cfN
_

  = Ncf/wc 

Krf  = Nr,/Ac 

rf  = Frf/Nrf 

cf  = Fcf/Ncf 

=arctanrf   

=- 

Fs=fCrfcosm - fTrfsinm 

=Fs/As 

r,f, cfN
_

, and  

fTcf= cfN wc: UoIFun  

Db=mean() 

= ELinSAS(m) 

(Physics level: 2) 

As=Ac/sinm 

Fs= DbAs 

=arctanr,f 

=- 

Rrf= Fs /tan(+) 

fcrf= Rrfcos 

fTrf= Rrfsin 

fTcf= Ncf= cfN
_

wc  

fCcf= r,f fTcf 

fC= fCrf+ fCcf 

fT= fTrf+ fTcf 

 

Ar2 r,f, cfN , c,f: PowerFun 

Rest as for Ar1. 

(Physics level: 2) 
Ar3 

r,f, cfN
_

, c,f: UoIFun 

Db=mean() 

=ELinSAS(MVMI ()) 
(Physics level: 3) 

Ar4 

r,f, cfN
_

, c,f: PowerFun 

Rest as for Ar3. 

(Physics level: 3) 
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Table 5.  Implementation details for approaches inspired by the analytical model of 

Rubenstein [24, 25].  

Appr.. Data analysis 

equation sequence 

Modeling and Db Prediction equation 

sequence 

R1 Same as in Table 4 

except that instead 

fining , find s as 

s=fCrf/{Ac(cotm +1)} 

 

r,f, cfN
_

, c,f: UoIFun 

sDb=mean(s) 

= ELinSAS(m) 

(Physics level: 2) 

fCrf= sDb Ac(cot+1) 

=arctanr,f 

=- 

fTrf= fCrftan 

fTcf= Ncf= cfN wc  

fCcf= r,f fTcf 

fC= fCrf+ fCcf 

fT= fTrf+ fTcf 
 

R2 Krf, r,f, Kcf/wc : Power Rest as 

for R1. 

(Physics level: 2) 
R3 

r,f, cfN
_

, c,f: UoIFun  

sDb=mean(s) 

=ELinSAS(MVMI( s)) 

(Physics level: 3) 
R4 

r,f, cfN
_

, c,f: PowerFun 

Rest as for R3.  

(Physics level: 3) 

 

Table 6.  Implementation details for approaches inspired by the semi-analytical model of 

Endres, Devor, and Kapoor [14, 15].  

Appr. Data analysis 

equation sequence 

Modeling and Db Prediction equation sequence 

EDK1 
Ac=tcwc 

 

Optimize UoIFun 

coefficients of Krf, ,rf, 

cfN
_

and ,cf  for 

minimum rmse of {fC  

fT} prediction. 

(Physics level: 1) 

Nrf=Krftcwc  

Frf =rf Nrf  

fTcf= Ncf = cfN
_

wc 

fCcf= cf fTcf 

fC= fCrf+ fCcf 

fT= fTrf+ fTcf 

EDK2 Start for EDK1. Then 

Db=mean() 

=ELinSAS(MVMI()) 

(Physics level: 3) 

Same as for Ar1 in Table 4. 

EDK3 Start as for EDK1. 

Then: sDb=mean(s). 

=ELinSAS(MVMI(s)) 

(Physics level: 3) 

Same as for R1 in Table 5. 
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Approach EU in Table 2 uses UoIFun as the empirical modeling function 

whereas approach EP uses PowerFun. Hence, these are also at level 0. The 

analytical approaches vary in terms of levels of insight (see column 4 of the 

table).  

The analytical approaches vary in terms of levels of physical insight (see 

column 3 of each table). Approaches KT1 to KT3 (in Table 3) are inspired by 

the works of Kobayashi and Thomsen, Ar1 to Ar4 (in Table 4) of Armarego, R1 

to R4 (in Table 5) of Rubenstein, and EDK1 to EDK3 (in Table 6) of Endres, 

DeVor, and Kapoor. The reader may obtain an understanding of the basic 

theories behind the approach summarized in each table by perusing the 

references cited in the corresponding table title.  

With respect to each approach, the following procedure is repeated over 

all the data records of each dataset. Firstly each data record, k (of dataset j), is 

processed using the analytical version of each modeling approach as given in 

column 3 of Tables 2 to 6. This step yields the particular subset of the set of 

model parameters (e.g., Krf, rf, cf, and/or s) pertinent to the particular 

modeling approach. Next, these are numerically modeled as UoIFun or 

PowerFun by applying the corresponding nonlinear regression technique. At the 

same time, the measured shear angles over the dataset are either modeled using 

ELinSAS, or a theoretically plausible shear angle distribution of the ELinSAS 

form estimated through MVMI. The key equations utilized during this phase are 

listed in column 4. The resulting model coefficients are stored in a database for 

retrieval during a subsequent force prediction exercise. Column 4 lists the key 

equations involved in the prediction phase. Essentially, these equations are 

reorganized versions of the corresponding analytical equations listed in column 

2.  

 

 

ASSESSMENT RESULTS AND DISCUSSION 

 

Table 7 shows the rms force prediction errors (in N) obtained from the 18 

modeling approaches with respect  to  each of the 12 datasets listed in Table 1. 

For each approach, the aggregate relative force prediction effectiveness values 

(ARFPE) calculated over all the datasets are shown in the last column. Note that 

some approaches have failed over certain datasets. Whenever a failure has 

occurred, the reason for the failure is indicted by a code (F1, F2, etc.) in the 

corresponding cell in Table 7. The nature of failure corresponding to each code 

is described briefly in Table 8. 

It is seen that dataset 1 (compiled by Eggleston et al. [28]) is the only one 

over which no failures have been observed. Therefore, it is not surprising that 

several modelers have used this dataset to validate their ideas. Dataset 2 has also 

fared well. Note that both datasets 1 and 2 are fairly large in size. With the 

exception of dataset 3, the remaining datasets are of much smaller size. This 
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reinforces the earlier observation about the desirability of working with as large 

a dataset as possible. 
Table 7. Performance of the 18 approaches over the 12 datasets detailed in Table 1. 

Appr. eij (N) over dataset j 

 

A
R

F
P

E
 

1 2 3 4 5 6 7 8 9 10 11 12 

BPN 51 38 15 P2 19 17 71 40 55 50 42 105 0.81 

ANFIS 44 23 14 P1 P1 17 71 40 P1 P3 160 P1 0.71 

EU 74 60 33 F1 F1 21 76 41 F1 119 369 F1 0.43 

EP 83 F1 38 47 25 22 76 41 154 132 F1 265 0.46 

KT1 76 52 82 F1 F1 NA NA NA F1 F2 2399 F1 0.25 

KT2 77 52 94 58 36 NA NA NA 254 F5 2243 415 0.33 

KT3 70 47 38 F1 F1 13 49 28 F1 92 324 F1 0.51 

Ar1 102 80 F4 F1 F1 NA NA NA F1 836 2957 F1 0.17 

Ar2 104 346 F5 131 26 NA NA NA 1 3 6 228 1557 305 0.23 

Ar3 110 60 62 F1 F1 19 76 27 F1 863 F5 F1 0.36 

Ar4 138 367 38 130 26 19 73 26 140 158 F4 287 0.42 

R1 115 86 F5 F1 F1 NA NA NA F1 848 3304 F1 0.15 

R2 108 330 F5 130 41 NA NA NA 127 258 1954 296 0.21 

R3 95 60 49 F1 F1 17 80 29 F1 842 5071 F1 0.38 

R4 117 373 30 128 27 14 73 25 135 157 4067 260 0.46 

EDK1 63 43 25 48 23 18 72 40 644 73 226 183 0.63 

EDK2 72 44 130 49 79 F2 F3 F3 660 1182 233 193 0.34 

EDK3 72 43 111 49 75 F2 F3 F3 661 1000 234 187 0.34 

 NA: Not applicable because measured  values are not available in the dataset. 

 Note: min(eij) for each dataset is shown in bold font. 
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As anticipated in the previous section, the force prediction performances 

of the two ANN-based approaches are significantly superior to those observed 

with respect to the 16 empirical/analytical approaches. With its ARFPE equal to 

0.81, the performance of BPN is quite impressive. However, there is always the 

possibility that, on small sized datasets, BPN has ended up memorizing data 

rather than recognizing patterns implicit in the data.  Further work is needed to 

establish how well this approaches scales up.  

 
Table 8. Descriptions of the failure codes in Table 7.  

Code Reason for failure 

 

F1 Numerical modeling of Krf, rf, , cf or cfN
_

 could not proceed. 

F2 Optimization routine did not converge. 
F3 Zero values of  encountered due to programming problems. 
F4 „Divide by zero‟ encountered due to programming problems. 
P1 Dataset does not include sufficiently wide range of . 
P2 Insufficient number of records in the dataset. 
P3 Suspected memorization rather than generalization by the ANN. 

 

Although, ANFIS has failed to produce acceptable results on five of the 

twelve datasets, its ARFPE value of 0.71 is close that of BPN. However, note 

that when the number of records is large (such as in datasets 1, 2 and 3), ANFIS 

has performed better than BPN.  

ANFIS has yielded rms force prediction error values of 44, 23, and 14N 

over datasets 1, 2, and 3 respectively (the larger datasets). We may therefore take 

these values as the upper bounds on the data errors contained in the two datasets 

(recall our earlier observation that an ANN is not embedded with any physical 

knowledge about the process being modeledhence it neither interprets nor 

misinterprets the process). Dataset 1 has SAE1112   as    the work    material   in   

„as received‟ state whereas dataset   2   uses   the   same   work material but in 

the annealed state. The work material in dataset can be expected to be more 

uniform as well as softer. This might be the reason for the lower value of eij 

associated with dataset 2.  

Sidestepping approaches KT3 and EDK1 for the moment, the two 

empirical approaches 1 and 2 exhibit the two next best performances. These 

approaches are purely empirical in nature, hence, devoid of any physical 

insights. In contrast to approach EDK1, these cannot even partition the cutting 

forces. Yet they exhibit inferior performances. Could it be that there is a 

compromise between the level of force prediction effectiveness of a model and 

the degree of detail to which the model can provide physical insights?   

In fact, with ARFPE equal to 0.51, approach KT3 has outperformed the 

two empirical approaches. The analytical part of this approach generally follows 

the ideas originally developed by Kobayashi and Thomsen [16-18] in the early 

1960s. Thus it is the earliest of the analytical approaches listed in Tables 2 to 6. 

The approach is rich from the viewpoint of physical insights with regard to 
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parameters such as  and . Yet, it is able to predict forces in a superior manner 

(it is at level 3). 

Although they were developed subsequently, with ARFPE values 0.17 and 

0.15 respectively, approaches Ar1 and R1 have fared quite poorly. The poor 

performances seem to arise from the fact that no optimization procedures have 

been adopted. Force partitioning is based on the simplistic notion of LFPT prior 

to parameter modeling. This results in r,f, cfN
_

, and/or c,f, being associated with 

much scatter so that the subsequent modeling of these parameters using UoIFun 

is associated with much error. As a result, the predicted friction angle, , 

sometimes exhibits too much scatter for an ELinSAS to be fitted in a reliable 

manner. However, from a procedural viewpoint, Rubenstein‟s approach is easier 

to implement because the determination of s needs only fC and  to be known.  

Approaches KT2, Ar2 and R2 differ from KT1, Ar1 and R1 respectively 

only with regard to the empirical function used for modeling analytically derived 

parameters Krf, rf, cfN , and cf (PowerFun substitutes UoIFun). Note that in 

each case, there is an improvement in the ARFPE value. Interestingly, although 

UoIFun is of more recent origin, its performance is not any better. However, it is 

possible that there are superior functions waiting to be discovered.   

Among the empirical/analytical approaches, approach EDK1 has 

demonstrated the best performance. This approach adopts a simplified version of 

the „dual mechanism‟ theory proposed more recently by Endres, DeVor and 

Kapoor [14, 15]. The original approach had used UoIFun to model five force-

related analytical parameters for the purpose of arriving at an optimized force 

partitioning that minimized the force prediction error over a dataset.  Our 

implementation (OFPT) however ignores the possible variation in the cutting 

edge roundness. As a result, the number of model parameters to be estimated is 

reduced by one. However, despite the simplifications, the ARFPE value of 0.63 

for approach EDK1 is quite large. The approach has been able to model all the 

twelve datasets (the rms error value of 644N is quite large for dataset 9 because 

the number of data records is small). Further, over eight of the twelve datasets, 

its performance is next only to those of the two ANN-based approaches. The 

main reason for this is that the approach uses an optimized force partitioning 

technique (OFPT).  

Figure 5 indicates that the rms error of EDK1 over dataset 1 is 63N. We 

have already noted that, over this dataset, ANFIS has achieved the lowest rms 

error value equal to 44N. This figure must be close to the data error since, as 

already noted, this dataset exhibits a fairly regular behavior. This suggests that 

the modeling error associated with EDK1 is of the order of (63
2
-44

2
)

0.5 
= 45N, a 

value that is of the order of the data error. 
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Figure 5. Force prediction accuracies of EDK approaches. 

Figure 6 illustrates the variation of the optimally partitioned rake-side 

cutting force, fCrf, over dataset 1 as estimated from approach EDK1 (and its 

sequels  EDK2  and EDK3). Note that the trends of fCrf are in broad agreement 

with expectations from traditional cutting theories: increasing with increasing tc, 

decreasing with increasing , and being relatively insensitive to changes in V. 

Similar general agreement was also obtained when the fTrf values were plotted. 

Further, the trends of the apparent chip-tool coefficient of friction, rf, have also 

been found to be in accordance with expectations  (see Figure 7): slightly 

decreasing with increasing tc, and increasing with increasing  and V. Further, all 

rf values are in the range 0.4 to 0.8.  

Literature on clearance-side forces has been relatively sparse compared to 

that on rake-side forces. Among the few papers available, the „dual mechanism‟ 

paper of Endres, DeVor and Kapoor [14, 15] seems to provide the greatest 

insights. Although the actual magnitudes are somewhat different, our 

observations (see Figures 8 and 9) with regard to clearance force variations are 

in qualitative agreement with those in [15]. Note from Figure 8 that, as expected 

from general cutting theory, fTcf is relatively insensitive to tc. Likewise, it 

decreases with increasing rake angle. The most interesting observation however 

is that the tool-work penetration force decreases substantially at higher cutting 

speedsprobably due to temperature-dependent softening of work surface layers 

as they approach the rounded cutting edge [14, 15]. Similar trends have been 

observed with regard to the clearance-side friction force, fCcf, except that its 

decrease with increasing cutting speed is less pronounced. This means that the 

clearance-side coefficient of friction, cf, can reach unexpectedly high 

magnitudes (as high as 30,000!). Further research is needed to fully appreciate 

the validity and implications of these observations. 
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Figure 6. Variation of fCrf as predicted from the EDK approaches. 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 51 101 151

Record number  

P
re

d
ic

te
d

 m
rf

 (
N

)

Increasing tc

Increasing 

V=10 m/min 28 m/min 52 

Dataset 1, EDK approaches

 

Figure 7. Variation of rf as predicted from the EDK approaches. 
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Figure 8. Variation of fTcf as predicted from the EDK approaches. 
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Figure 9. Variation of fCcf as predicted from the EDK approaches. 

 

Consider now the prediction of shear angle that is of much significance in 

downstream modeling activities aimed at predicting cutting temperature, tool 

wear, etc.  From this viewpoint, compare the ARFPE values of approaches Ar1 

and Ar3. The only difference between the two approaches is that the former is 

based on measured shear angle values whereas the latter utilizes theoretically 

estimated values obtained through the minimization of the variation of 
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Armargeo‟s work material invariant, (recall MVMI). Note that the ARFPE 

value for Ar3 (=0.36) is significantly higher than the figure (=0.17) achieved by 

Ar1. This suggests that  values obtained from MVMI are superior to measured 

values. This conclusion is reinforced every other time we replace the classical 

approach with MVMIcompare the ARFPE values yielded by Ar2 with Ar4, by 

R1 with that by R3, by R2 with that by R4, and by KT1 with that by KT3. This 

conclusion is of much practical significance since shear angle measurement is a 

process that is not easily automated. 

Returning to our discussion of EDK1, clearly, the approach is useful if the 

intention is merely to predict cutting forces. On the other hand, owing to its 

„mechanistic‟ nature, it can only provide physical insights at level 1it does not 

give any information regarding the shearing phenomenon leading to chip 

formation. However, the approach does yield the optimally partitioned rake and 

clearance side forces. Hence, we may determine the shear angle from the rake-

side forces, fCrf and fTrf, by adopting the previously described ELinSAS/MVMI 

procedure where MVMI is implemented by minimizing the fractional variation 

of either (EDK2)  or s (EDK3). Once,  has been determined thus, it is an easy 

step to estimate parameters such as  and s related to the shear plane/zone.  

Figure 10 compares the  values predicted by EDK2 and KT3 over dataset 

1 with the corresponding measured shear angle values. Note that the 

performance of EDK2 is significantly superior to that of KT3. The rms error of 

3.8
 (
deg) resulting from EDK2 is much smaller than the 11 deg. yielded by KT3. 

The former figure is quite plausible when we keep in mind the previously 

discussed practical errors and theoretical uncertainties associated with the 

measurement of chip dimensions. Note also from Table 7 that EDK2 has 

performed better than EDK3.    
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Figure10.  Correlation between predicted and measured shear angles.  
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EDK2 and EDK3 involve optimum force partitioning through OFPT 

followed by optimum shear angle selection through ELinSAS/MVMI. However, 

it should be possible (at least in principle) to carry out the two optimization 

procedures in „one shot‟ so as to arrive at a more plausible shear angle 

prediction. However, unfortunately, our attempts to implement such a „one shot‟ 

procedure have met with convergence problems owing to the need for 

determining a much larger number of model coefficients simultaneously. Further 

research is required to resolve this issue.  

 

 

CONCLUSIONS 

 

Modeling approaches may be classified into three types. Level 0 models 

merely facilitate cutting force prediction. Level 1 models enable cutting force 

partitioning between the rake and, hence, provide insights regarding friction 

conditions at the chip-tool and work-tool interfaces. Level 2 models provide 

additional insights regarding parameters related to the shearing process that leads 

to chip formation provided that empirical shear angle values are known. Level 3 

models do the same but without the need for measuring shear angles. In contrast 

to levels 0 and 1, levels 2 and 3 are capable of facilitating down stream modeling 

activities directed towards the estimation of cutting temperatures, tool wear, etc. 

ANN-based and empirical models are level 0 models. Analytical models provide 

insights at level 1 and above. 

The present paper has also compared two numerical functions called 

UoIFun and PowerFun that can be used to model cutting force related analytical 

parameters. Regarding shear angle distributions, arguments have been presented 

in favor of utilizing a new function called the extended linear shear angle 

solution (ELinSAS). 

In the absence of a „perfect‟ dataset, it is impossible to assess a model‟s 

effectiveness with regard to cutting force prediction in an absolute manner. 

Hence, a relativistic approach has been developed for estimating the „aggregate 

relative force prediction effectiveness (ARFPE)‟ of a given predictive model. 

Traditional analytical models have all required chip dimensions to be 

measured for the purpose of estimating the shear angle. Such measurement is not 

easily automated and, hence, has become the greatest hurdle to enabling the 

compilation of autonomous machining databases and cutting force prediction by 

each individual machine on the shop floor. This problem has been resolved in the 

present paper by „minimizing the variation of the notional work material 

invariant (MVMI)‟ in combination with ELinSAS and subject to Hill‟s classical 

constraints.  

In all, two ANN-based (BPN and ANFIS) models, two empirical (UoIFun 

and PowerFun) models, and fourteen analytical models based on the cutting 

theories of Armarego, Rubsenstein, DeVor and Kapoor, and Kobayashi and 

Thomsen have been subjected to comparative assessment.  
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The two ANN-based approaches have been found to outperform the 

empirical and analytical models. When the dataset is large, ANFIS can perform 

better than BPN.  

Certain analytical models outperform empirical models although, like 

ANN-based models, the latter are devoid of any physical insights and, hence, are 

not limited by any erroneous assumptions regarding the physics of the process.  

With regard to modeling of analytically determined process parameters, 

PowerFun has outperformed UoIFun.  

With regard to schools of analytical modeling, that of DeVor and Kapoor 

has outperformed much better, mainly because it uses an optimized force 

partitioning technique. However, on its own, this model is unable to predict 

shear angles.  

With regard to analytical models at levels 2 and 3 that depend on 

measured shear angles, the approach following the ideas of Kobayashi and 

Thomsen has performed much better than those following the ideas of Armarego 

and Rubenstein. The main reason for the poor performance of the latter 

approaches seems to be that force partitioning via the assumption of a linear 

cutting force versus cut thickness relationship leads to undue scatter in model 

parameters.  

The shear angle values estimated via ELinSAS and MVMI leads to much 

superior cutting force predictions. This superiority is much more evident when 

the datasets are large. Having arrived at a method for estimating shear angles 

from cutting force data alone, each machine tool on the shop floor can now be 

endowed with the ability to predict cutting forces on the basis of data collected 

from its own normal shop floor experiences.   

Several issues identified in the paper require further research. An example 

is the need for carrying out in „one shot‟ the optimization procedures directed at 

force partitioning, and shear angle determination.  
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