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Abstract

End milling is one of the most extensively used machining operations generally in modern
machine shops and particularly on CNC machining centers. Cutting force magnitudes have
enormous influence on the performance measures of end milling such as tool wear, tool edge
chipping, tool breakage, work-piece dimensional accuracy. Hence it is of significant economic
importance to be able to predict cutting forces under varying cutting conditions prevailing on
the shop floor. The traditional approach of relying on analytical and computational models has
generally failed to develop the ability to predict cutting forces under shop floor conditions.

Much research effort world-wide has been directed in recent years into developing
intelligent manufacturing systems who can monitor themselves, anticipate problems that
would be encountered on the next workpiece, and take necessary precautions. Developments
in artificial intelligence (Al) have been particularly useful in this context. Amongst Al
techniques, learning based on artificial neural nets (ANN) has been found to be particularly
useful.

Development of new sensing and sensor fusion techniques have also contributed to

progress towards developing intelligent manufacturingf systems. Amongst the sensors,
acoustic emission sensing has been found to be particularly suitable for monitoring machining
operations. There is evidence that the true mean square value of AE has a significant positive
correlation with the energy expended in the deformation and friction zones in machining.
It also appears that the learning effectiveness of ANN can be improved by augmenting the net
with real-time sensory information. However, notwithstanding the significant effort put into
applying ANN and AE to end milling, little work has so far been done towards applying ANN
and AE for predicting cutting forces in end milling.

In view of the above considerations, this project has attempted to predict cutting forces in
end milling using ANNs augmented by acoustic emission information. To this end, cutting
forces have been measured for a given cutter-work material-cutting speed-feed rate
combination in a range of radial and axial depths of cut using a three-component milling
dynamometer. Simultaneously, the true measn square values of acoustic emission was
measured using well known acoustic emission sensor placed in the vicinity of the cutting zone.
Next, using a well known commercially available software called Qnet, back propagation
networks (BPNs) were trained to learn randomly selected subsets of the measured data. In
these learning exercises, the input array was restricted to the cutting conditions: cutting speed,
feedrate, axial depth of cut, radial depth of cut. The network architectures, momentum
parameters, the numbers of back propagation cycles, etc. were fine tuned to obtain the best
possible results. The results showed that the force prediction ability of the network could not

be better than about 3%. Hence, in the next phase, the input arrays were augmented with the



corresponding measured values of the true mean square of acoustic emission. It was found
that the learning ability improved signifiicantly to below 1%.

The present project has demonstrated that it is possible to have satisfactory force
prediction accuracy with neural nets augmented by AE sensing. However, this should only be
considered as a preliminary finding. Further work covering a much wider range of cutting
situations and exploring more refined AE signal processing and ANN strategies is needed

before the full benefit of the approach can be realized.
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Chapter 1

Introduction

1.1 The input-output view of a machining operation

This project aims to predict the cutting force magnitudes in end milling. Cutting forces may
be considered as a subset of the performance outputs from a machining operation [Armarego,
1996]. This section briefly summarises the input-output views of a machining operation as
outlined by them and subsequently refined in [Venuvinod, 1997].

Figure 1.1 shows the Input output view of a machining operation. Inputs are any
parameters which determine the behaviour of the process. Outputs are any variables or
parameters which result from the particular behaviour of the process. In this figure, {I}, {P} and
{O} are stated clearly. The direct relationship among {l}, {O} and {P} are as shown in Figure
1.1. {I} is the input parameter set, after any machining process {P}, the input set are converted
into output set {O}. For instance, wood is transformed into paper by a manufacturing process.
Then wood is one of the {lI}, {P} is the mentioned manufacturing process and {O} is the output

data concerning the process behaviour which is of importance to the process designer.

I (R {O}
Input — Process Output
Parameters Paramneters Paraneters

Figure 1.1 The input-out view of a machining operation [Armarego, 1996]

{In} [P] {Op}
{I} {Og}

{ln} = Nominal Input
{I} = Unanticipated Input Variations
P =The Process
{Op} = Perfromance Measure (Output)
{Os} = Output capabele of being sensed

Figure 1.2 The classification of process inputs and outputs [Venuvinod, 1997]



There are two kinds of inputs to a model as shown in Figure 1.2: one is the nominal input
array while the other is the array of unanticipated inputs. Both of them are inputs to a process.
The difference is that, in a nominal input set, all the information is known and the associated
parameters under our control. However, in the cases of {l,}, the information might not be
known or can not be controlled. For instance, when we set the cutting speed of a turning
machine at a certain value, it is possible to keep the speed in an acceptable range. This
means the cutting speed is under our control. Another example is by taking the transformation
of wood into paper. The nominal input is the properties of the raw material, wood. If there
exists some impurity in the wood and can not be found out before any manufacturing process
has taken place, the output “paper’” may not be in the desired form and may have to be
rejected. The impurity will then become the “unexpected” input to the transformation process.
Similarly, a process planner may be excepted to have a tempered structure steel after a
machining process. However, it is possible that there exist some martensitic structure steel in

the batch of workpieces. Such unexpected input is not under our control and it will be grouped
as {I,}.

A partial list of the common input parameters to machining operations is given below
[Armarego, 1996]:
e  Work Material Properties

- Mechanical (elastic and plastic)

- Thermal

- Fracture

- Wear

e Tool Material Properties
- Mechanical (Hardness, etc.)
- Thermal
- Fracture
- Wear, Diffusion, etc.

- Coatings

. Tool Geometry
- 1SO 3002/1

- Chip Former Features

. Cutting Conditions
-Cutting Speed
-Feed (rate)
-Depth of Cut
-Radial Depth of Cut

-status of dry or wet



With regard to model output, it contains the basic machining performance information.
Armarego et al have argued that there is a need to quantitatively predict the performance
output [Armarego, 1996].

According to Venuvinod [Venuvinod, 1997], it is more useful to sub-divide the output array
from a process into two subsets. One is performance output {Op} while the other is sensory
output {Og}. {Og}can determines the efficiency and effectiveness of the process, while {Og}
contains variables that can be measured or sensed in real time. There is a possibility of

overlap of the output. That means one can put the output into either {Op} or {Og}.

A partial list of {O, } according to [Armarego, 1996] is given below:

e  Chip Formation Geometry
- Chip Thickness, Length and Width
- Chip/Tool Contact Length

e  Cutting Forces
- 3 forces, torque and thrust, etc.

- Cutting Power

e  Cutting Temperatures
- Mean Rake, Mean Flank, etc.

- Temperature Field(s)

e Tool Wear and Life
- Flank Wear Parameters
- Crater Wear Parameters
- Groove Wear Parameters
- Tool Fracture
- Tool Life (Taylor Constant, Index, etc.)

- Failure Modes (Entry, Exit Failures, etc.)

e Surface Finish and Integrity
- Surface Roughness and Topology
- Residual Stresses
- Surface Hardening

- Surface Damage

e Component Dimensional Accuracy/Errors
- Cutting Vibrations and Chatter

e  Chip Form for Chip Control

- Classification according to Spaans, etc.
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e  Burr Features
- Entry Burr
- Exit Burr

A partial list of {Os} is as follows:

e Cutting forces using dynamomter

e Acoustic Emission using AE sensors

e Cutting Temperature using calorimeters, thermocouples, thermal paints, infrared radiation
camera, etc.

e Tool Wear using AE, vision system, cutting force signals, noise, vibration, etc.

e Tool breakage using AE, cutting force, vibration, noice, induction coil, vibration, etc.

e Chip clogging using AE, Cutting force, vibration, accelleration signals.

e Power consumption

It is interesting to note that, many of the members in {O¢} family can be measured by
using Acoustic Emission. The relationship between {O,} and {O} often is that, {O,} can not be
directly measured. However, by measuring the sensory subset {O}, it might be possible to
predict {Op}.

1.1 The importance of being able to predict cutting forces

Owing to increasing competitive pressures, most machining industries continue to
face the problem of achieving cost savings. The cost of a product includes many elements
such as the cost of materials, the cost of equipment, the cost of tooling, the cost of the
manufacturing processes, and the cost of rework.

An ability to predict tool breakage can lead to significant reductions in manufacturing
costs. One method used in detecting tool breakage is in-process monitoring of cutting force or
torque. A sudden change in the force amplitude indicates the tool breakage. A large increase
in the cutting force can lead to tool breakage. Gradual tool wear often leads to a gradual,
albeit small, increase in the cutting force. Further, an increase in cutting force, in turn,
indicates an increase in power consumption. Hence, cutting temperatures can be expected to
rise thus leading to more rapid tool wear. It is therefore clear that an ability to predict cutting
forces will facilitate the avoidance of tool breakage and tool wear in industrial practice.

The magnitude of the cutting force can also have a direct effect on the work-piece
accuracy. Elements of the machine tool - fixture- work-piece - tool (MFWT) system deflect
under the action of the cutting forces. This leads to deviations of the relative path of the tool tip
from the surface being machined from the programmed path. Consequently, there would be
significant dimensional errors on the machined part. The traditional answer to this problem is
increased inspection and rejecting the parts which are outside the permitted tolerance zones.

However, this approach invariably leads to increased costs of inspection and re-work. The
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modern answer to this problem is compensation - correcting the CNC program to compensate
for the errors arising from the deflections of the MFWT system (and other errors such as the
kinematics and thermally induced errors inherent in the machine tools). Several research
projects are currently in progress at the City University of Hong Kong aimed at developing
such error compensation systems. However, a pre-requisite to the success of such work is the
ability to predict the magnitudes of cutting forces from given sets of process input conditions.
To measure cutting force, the traditional approach is directly measure the cutting force
during cutting. However, it is not practical to have a dynamometer located in a shop floor. The
measuring device is far more expensive compare to a AE sensor. A dynamometer costs
approximately $300,000 while a milling machine only costs $100,000 and AE sensor worth
$10,000. It is ten times of a dynamometer against a sensor. Both the sensor and the
dynamometer are hi-tech material. They have to be take care under any operation. Therefore,

the installation of a dynamometer is not valuable.

1.3 Current state of force prediction through modeling

According to [Venuvinod, 1997], there always exists a network of cause-effect
relationships within a process, and by analysing these relationships in terms natural laws, it
should is possible to predict the output {Op} quantitatively. ‘generality” and “accuracy” are the
two vital critical point of a model. “generality” is the capability in transporting the model under
different conditions. It is great to know that if there is an existing model which can be used for
a variety of process. Even the perfect model is not available. And “accuracy” is the
effectiveness and efficiency of a process. The greater the “generality” and “accuracy” of a

model, the greater is the usefulness of the model.

Workpiece Tertiary

Figure 1.3 The three shear planes of metal cutting

The literature on analytical modeling is too vast to be comprehensively reviewed here.
Hence, discussion will be limited to shear plane based models. Analytical modeling started
with Merchant 1944 model for single edge orthogonal cutting [Merchant, 1944]. The
assumptions include sharp cutting edge, the admissibility of the approximation of a shear
plane, the constancy of chip-tool friction angle, and the constancy of the shear flow stress on
the shear plane. The first assumption means that the parasitic rubbing and plowing forces in

the vicinity of the cutting edge cannot be predicted. The implication of the second assumption
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is that the theory is applicable only when the shear zone is thin. This approximation is valid
only for less work hardening materials and at high cutting speeds. Another problem is that the
model requires the chip thickness or the shear angle to be known a priori. The first was
Merchant’s own solution which provided the upper bound to the shear angle and hence to the
lower bound of cutting force. Subsequently, many other (approximately 52 according to
Lindstrom) shear angle solutions have been developed [e.g. Lee, 1977 ]. However, none has
been found to be universally applicable or robust enough.

Merchant’s approach has been extended to single edge oblique cutting [e.g. Shaw, 1977,
Armarego, 19?7, Zorev, 19?7?]. In terms of the ability predict forces, these models suffer from
the same set of limitations as the single edge models. In addition, there is the problem of
predicting the chip flow angle. Stabler has developed a simple equation stating that the chip
flow angle is equal to the cutting edge inclination angle [Stabler, 19??]. But this, at best, is a
very course approximation.

More recently, much activity has taken place in extending the shear plane models to a
variety of practical machining operations for cutting force prediction. The more notable in this
regard is the work being done by Armarego and et al at University of Melbourne to
systematically extend the theory to other operations. In this continuing effort, Armarego et al
try to predict cutting forces in different operations from a common machining database derived
from single edge orthogonal cutting and containing information on the shear angle, chip-tool
friction, shear flow stress on the shear plane and the chip flow angle[e.g. Armarego, 1977,
1977, 197?7].

In recent years there has been much activity with regard to the development of
computational models.Amongst the computational approaches, finite element modeling
(FEM) has been particularly popular. However, a major problem with all computational
approaches has been that they require a priori knowledge of the stress-strain-strain rate-
temperature relationship of the work material. Such information is very difficult to obtain since
it is difficult to simulate the extreme strains and strain rates prevailing during cutting in actual
material tests in practice. Another problem is that these models require a quantitative criterion
for chip separation and a knowledge of the progression of chip-tool friction as one progresses
from transient to steady state cutting. As a result, as recently observed in a CIRP report
[Childs], computational models are still unable to quantitatively predict cutting force
magnitudes - the error is often of the order of 100%.

A further complication in predicting cutting force is the presence of the built-up edge under
a range of cutting conditions. While this phenomenon has been extensively studied
experimentally, there are no analytical models either to predict the existence of built-up-edge
or take into account its influence on the cutting forces.

Although modelling has provided us with a deep understanding of the machining process,
currently available models suffer from many limitations. For instance, many of the
performance outputs can not still be predicted and the model performance against the two

basics criteria, “generality” and “accuracy” , is still far from being satisfactory. One major
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drawback is the requirement for massive machining databases, MDB, which consists of the
appropriate magnitudes of the various variables and parameters used in the model for the
specific machining process (see Figure 1.3). The database provides the machining coefficient
for the machining process. However, the process of determination of these parametrs,
variables or coefficients itself requires extensive and expensive off-line experimentation, X.
Owing to this requirement of massive experiments, the manufacturing cost will be greater.

This is not an efficienct approach.

{Iln} — [Mp] | {Op}
{C} = Model 4LCoefficients

MDB
| Machining
ry Database

Xoir: Off-line Experiments

Figure 1.3 Prediction based on modelling supported by machining database

As noted recently in [Venuvinod, 1996 ], a problem with all the analytical approaches
summarised above is that these machining databases, of necessity have to be static. In
particular they cannot anticipate the myriad real time factors that influence cutting force
magnitudes. These disturbing or unknown factors include the presence and size of built-up-
edge, unanticipated variations in work material properties (grain size, phase dispersion, hard
scales, etc. — all of which influence cutting forces, minute variations in the sharpness of the
cutting edge, the presence of lubricating films on the tool faces, and so on. Thus, while these
models appear to have been validated against limited experimental data, they are unlikely to

be robust enough to be applicable in the highly variable CNC machining environment.

1.4 Force prediction through learning

Force prediction using modelling approach has been discussed in the previous sections.
However, modelling always involves a sets of equations which is only applicable in limited
cutting conditions. It becomes less capable to the modern rapid growing industries. A new
approach, “learning”, is introduced which simulate the capability of a human brain. The
learning approach is believed availible with “no limitation”. The general archeture of a learning

system as shown in Figure 1.4 is proposed by Veninoud.

{In} {On}

Learning Network




14

Figure 1.4 A view of Learning Network

The steps of learning is as simple. The inputs array which can cause the desired output
array is feed into the learning network, an array which known as Weighting is kept changing
until the generated output is similar to the desired output. The greater similarity of the
generated output to the desired output, the greater accuracy with the learning network. Unlike
the modeling approach, LN, or ANN, is an implicit model which the contains inside the network
and the processing method are all unknown to user.

ANN can be classified as supervised or unsupervised. The former one will have desired
output while the later haven’t. These two networks will be used for different purpose. However,
both of them operates similarly. There are two learning stages for different kinds of ANN,
training and testing. The training stages requires input to the network and desire output
together alter the weighting in the network. Weight is the spilit of the network. The training

cycle is repeated until testing stages give out satificaty accuracy.

1.5 Augmenting learning with sensing

The basic ability of a learning network can be improved by adding a sensory input as the
nominal input array based on the idea of Veninoud| ]. The general drawback of traditional
approach of modelling is from the large size MDB. To generate a rather reliable MDB, a large
sum of expensive off-line experiments is required. This will greatly increase the manufacturing
cost. At the same time, the modelling method with MDB can not due with inherent variable
input. Such input may always happen in the realistic shop floor operation.
As shown in Figure 1.2, there always exist an output together with {O.}, say {O}. These output
is the result of model Mp and must contains much information compared with the various
input. The main critical point is how to fully utilise the hidden information of the sensory output.
To use a sensing output as one row of the input array is one of the answer and this new
approach has brought success to Venioud’'s experiment about compensation for workpiece

dimensional errors in turning.

1.6 The end milling operation
1.6.1 A typical feature of the milling process is that the rotating tool (the milliig cutter) has
a number of cutting edges each of which works over only part of its rotary path and travels
over the remainder without cutting. The machine tool designer must always bear in mind the
implications of these conditions, which concern the pulsations of the cutting forces; the
vibrations of tool, workpiece and machine; the quality of the surface produced;, etc. The axis
of rotation of the milling cutter remains usually stationary and the feed movement is carried out
by the work-piece.

When the cutting edges are arranged on the circumference of the milling cutter, the
process is called Peripheral Milling, whereas when they are arragned on the cutter face, the

process is called Face Milling.
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As each tooth or insert of a milling cutter enters the workpiece, it is subjected to a
mechanical shock load. The magnitude of this load depends upon the workpiece material,
cutter position, operating conditions, and cutter geometry. Cutting forces in milling are cyclical,
being roughly proportional at any position. Heat generated in the milling operation is also
roughly proportional to the undeformed chip thicknes and cutting forces. Rapid changes in
generated heat place a severe strain upon the cutter material and can lead to thermal

cracking.

1.6.2 Up and Down Milling
If the rotation of the milling cutter cutter is such that the tangential cutting force is

generally opposed to the direction of workpiece feed and the axis of the cutter does not
intersect the workpiece, the undeformend chip thickness constantly increases during the cut.
This is called up milling or sometimes conventional milling. If the rotation of the cutter is such
that the tangential cutting force is generally in the same direction as the workpiece feed and
the cutter axis does not intersect the workpiece, the undeformed chip thickness constantly
decreases during the cut. This is called down milling , also known as climb milling. Up and
down milling exist in their pure forms only when the cutter spindle center-line does not
intersect the workpiece. In such cases, each tooth executes up milling action in one part of the
cut and down milling in rest of the cut.erations, either up milling or down milling may be
selected by proper selection of the direction of the machine table feed, cutter position, and
direction of cutter rotation. However, this condition is not satisfied in all slotting and side milling
operations, and some face milling and end milling situations.

One of the significant differences between up and down milling lies in the direction of the
cutting forces generated. In up milling, the tangential force opposes the thrust force which is
the force attempting to push an individual tooth or insert out of the cut. As a result, the feed

force must be high for the cut to be made.

1.6.3 Chip Formation in Milling

The basic process of chip formation in milling is the same as for all other metal cutting
operations — a wedge- shaped cutting tool engages the workpiece to remove a layer of
material in the form of a chip. Chip formation in milling differs from single-point metal cutting in
several aspects. Practically every millng operation consists of an interrupted cut, with each
tooth or insert generally in the cut less than half the total machining time per cutter revolution.
While the tooth or insert is in the cut, the thickness of the chip being formed constantly
changes because of the dual motion — cutter rotation and work-piece feed which is

characteristic of the milling process.

1.6.4 Versatility of End Milling Cutters

End mills are the most common and widely used type of milling cutter. These versatile

tools are also available in more standard styles, shapes, and sizes than any other milling
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cutter. Major applications include facing, slotting, profiling, plunge cutting and diesinking and
cavity cutting. Because their versatility, they are the most extensively used milling cutters on

CNC machining centres.

1.6.5 End Milling Operation Inputs

The normal input array, {l,,}, to an end milling operations are (see Fig. ?):
cutting speed / RPM

axial depth of cut/ a,

radial depth of cut/ a,

feed rate / f

1.6.6 End Milling Operation Outputs — Performance Measures, {l.}

A partial list of (I} for end milling is: power consumption, Longitudinal feed force (F)),
transverse feed force (F;), thrust force (F,), mean torque experienced by the cutter, mean
cutting temperature, mean flank wear and/or wear rate, tool edge chipping, tool fracture,
roughness of the machined surface, chatter. The present project is mainly concerned with

predicting the three force components Fy, F,, and F,.

1.7 Objectives of the present work

It is useful now to define the basic objectives of the current project. The following
observations derived from a review of the literature have led to the specific objectives listed in
the next paragraph:

¢ End milling is one of the most extensively used machining operations generally in
modern machine shops and particularly on CNC machining centres.

e  Cutting force magnitudes have enormous influence on the performance measures,
{O,}, of end milling such as tool wear, tool edge chipping, tool breakage, work-piece
dimensional accuracy. Hence it is of significant economic importance to be able to
predict cutting forces under varying cutting conditions prevailing on the shop floor.

e  The traditional approach of relying on analytical and computational models has
generally failed to provide satisfactory prediction of cutting forces.

e  Much research effort world-wide has been directed in recent years into developing
intelligent manufacturing systems who can monitor themselves, anticipate problems
that would be encountered on the next workpiece, and take necessary precautions.
Developments in Atrtificial Intelligence (Al) have been particularly useful in this
context. Amongst Al techniques, learning based on Artificial Neural Nets (ANN) has
been found to be particularly useful.

e Development of new sensing and sensor fusion techniques have also contributed to
progress towards developing intelligent manufacturing systems. Amongst the
sensors, acoustic emission sensing has been found to be particularly suitable for
monitoring machining operations. There is evidence that the true mean square
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value of AE has a significant positive correlation with the energy expended in the
deformation and friction zones in machining.

. It appears that the learning effectiveness of ANN can be improved by augmenting
the net with real-time sensory information.

¢ Notwithstanding the significant effort put into applying ANN and AE to end milling,
little work has so far been done towards applying ANN and AE for predicting cutting
forces in end milling.

The following are the objectives of the work described in this dissertation:
Measure cutting force in end milling under a variety of cutting conditions
Investigate the effectiveness of BPN in learning to predict end milling forces
Implement a system for measuring AE from end milling

Investigate the effectiveness of augmenting the BPN with the TMS values of AE
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Chapter 2

Literature Review

2.1 Cutting force models for end milling

The need to quickly predict tool failure in milling process is the need to modern industries.
To monitor the cutting force during milling process is one of the approach to achieve the goal.
Many survey and research has been done on the mentioned area, also with milling[Adolfsson,
1996] [Alauddin, 1996] [Altintas, 1992] [Tama, 1996] [Altintas, 1989][Ryabov, 1996] [Altintas,
1988] [Ber, 1988][Tam, 1987][Devor, 1980], Computer based modelling is now becoming
widely used[Armarego, 1993][Armarego, 1991] [Altintas, 1991] [Deshpande, 1990]
[Armarego, 1985][Whitfield, 1976]. In this paper, emphasis is paid on the multi-point cutting
process- end milling process. The process is far more complicated compare to the single
point cutting process. The end milling process is a helical one which consists with three
components: tangential force, axial force and radial force[Armarego, 1970]. The forces are
generated during the entrance and exit of the tool into the workpiece. There has already
developed many models to predict, control and monitor milling force[Rober, 1996][Bayoumi,

1994][Tai, 1995]. However, no exact one is the most powerful.

2.2 Sensor for machining

Sensing has been clearly defined as the measurement and monitoring of the generating
output of machining, tool condition monitoring, force prediction, etc [Takatsuto, 1994][Lee,
1988][Bischoff, 1987][Suzuki, 1985][Moriwaki, 1984] [Suzuki, 1983][Micheletti, 1976][Zakaria,
1973]. The signal collected will then be analysis with a signal processing algorithm. A system
known as “smart sensor” system is proposed[Santochi, 1996][Kuo, 1994][Guinea ,1991]. The
proposed system has been described in the previous chapter in detail. The general purpose of
introducing sensory control in the field of machining is to give immediate response when there
is any detectable alarm[Li, 1993] [Jiri Tlusty, 1988]. Also, the sensor must be smart enough to
distinguish between unwanted noise and failure event. It becomes the great aspect in
searching for the best threshold level under varying cutting condition.

The sensor itself also must have a portable capability. It means that the sensor can be
installed in a wide range of machining operation. Also it must have the reliability and
maintainability. The reliability of a sensor comes with the control system which set the
threshold level to the sensor and the ability in separating the noise. The maintainability of the
device can greatly reduce the installing and maintaining cost. In the modern industry, the
sensors are always comes with a shielding in order to reduce the effect of interpreting noise.

Also, they always have a housing accompanied so as to minimise the accidental breakage.
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Therefore, sensor system is widely used for the advantage of providing fast response with is

critical in modern manufacturing.

2.3 Acoustic emission sensing for machining operations

Research of Acoustic Emission has been started by Dornfeld and Kannatey-Asibu
regarding to orthogonal cutting[Blum, 1990][Heiple,1994]. And later on the study is extended
to the topic of obilque cutting. There are many documents talking about the influence of three
cutting parameters, cutting speed, depth of cut and width of cut on AE RMS. There is only one
model stating the general relationship of these three cutting parameters to tool failure, tool
wear, etc. The literature claimed that the AE RMS should increase as the cutting parameters
increase for the reason of their indirect effect on shear angle.

In process monitoring for tool conditioning, material behavior, cutting force generation,
detection of thermal condition have become the wide interest of the modern industries. Many
researches have been carried out to find out the best approach to satisfies the interest [Yen,
1986][Blum, 1988][Lan, 1985][Tse, 1985][Kannateyasibu, 1981][Kannateyasibu, 1980]
However, no certain approach is believe to be the absolute answer to the interest. Over the
last decade, Acoustic Emission has been analyzed in detail under different machining
conditions. Now there is no doubt in using Acoustic Emission as it brings lots of information
content that is not easily to be found out and noticed by any other means of sensing[ ]
Acoustic Emission, in short, is the transient wave released from the plastic deformation zone
during metal removing process. It shows changes when there is tool wear, too breakage, built
up edge, etc. Several technique of analyzing AE have been developed. Two examples of the
technique are time domain analysis and frequency domain analysis by Fast Fourier Transform
function. And these two techniques are widely used in many researches. The AE generated
always in the order of 0.1 to 1 MHz range[ ]- It requires a sensor with high frequency
response. Basic Acoustic Emission will be discussed in Chapter 3 detailly with the sensor

employed.

2.4 Acoustic emission sensing for end milling operations

In this section, a detail discussion of one paper will be proposed. The most important
paper which gives me the motivation of the this project is by Man Liu and Steven Y. Liang. The
title of the paper is Monitoring of Peripheral Milling Using Acoustic Emission. The document
stressed that there is no document clearly analysis the relationship of feedrate, depth of cut,
and acoustic emission.

In order to make comparison between the two experiment data, it is recommended to use
the same apparatus, operating under the same working condition. However it is not possible
for different shop floor layout. Maximum similarity is required. In Man Liu’s paper, he used AE
TMS as the characteristic parameter of AE signal. The primary definition of TMS will be clearly
stated in the later chapter. In his preliminary experiment, the vertical distance between AE

sensor and the cutting zone has found great influence on the AE TMS. The greater the
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distance, the weaker the AE TMS. However, he doesn’t explained the principle behind in
detail. And, the observation will be confirmed by later experiment with explaination as soon as
possible.

Also, he has used the resultant force at all without any statement. However, the reason of
using resultant can be explained in later chapter after my experiment. He has made
modifaction of the sampled data by introducing a transfer function which will make the
sampled data more smoother for measurement.

He has made some assumption on the experiment, that’s all the AE energy are coming
from the tool/workpiece interfaces, the deformation energy from the cutting zone, the rubbing
energy from tool/workpiece interfaces. And he assumes no AE energy is related the chip
breaking and formation. And based on this assumption, he generates a set of equations.

It should now first define zone AB and CD. The following figures will illustrate the location of

the zone

cut
y A

workpiece

Figure 2.2 cutting zone AB

cuttgr

C D  workpiece

Figure 2.3 Rubbing zone CD

It is clearly noticed from the figures that AB is the perperheral cutting zone while CD is
the rubbing zone. Now, | would like to discuss these equations in detail. The first equation he

used is

TMS =C, (E s +E.)
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where Eé’g is the energy from rubbing zone CD
E:g is the energy from cutting zone AB

C, is a proportional constant

Based on this equation and the observation after his testing, he generates two
equation which are simple linear equation in the format of y=mx + ¢ showing the general
relationship between axial depth of cut - AE TMS and radial depth of cut - AE TMS.

According to the energy conservation equation, there will be machanical energy which
converts into other from of energy in cutting, so there is only a portion of energy which will
finally detected by AE sensor. However, the main problem is that he first assume the “ total
energy” but not concern the energy from different zones individually. For more generality, |

would like to setup another energy equation.

TMS = (C,E 3 + C,E [y ) wwmemmemmemeememes

where C, and C, are proportional coefficient of zone AB and CD

For graphs from Mr. Liu, not all the cutting x - axis value are the same. For example, the
radial depth of cut from the three different cutting parameters doesn’t have the same x - axis
value, it seens that only linear portion are shown. There is no explaination of these distortion.

Mr. Liu has developed two equations based on his experimental data regarding to the
radial and axial depth of cut. Both of them are liner polynomial equation with two leading
coefficient. However, he doesn’t provide a good representation of the coefficient. In another
work, it is to do lots of off-line experimental to draw a MDB which is only for the coefficient.
Furthermore, he only has experiments on two kinds of material and working under several
cutting conditions. It is not enough to draw conclusion for the AE generation with the effect of

different cutting parameters.

2.5 Learning using ANN in machining

With the idea of “smart sensor”, an Artificial Neural Network computer based software is
widely used in many on-line monitoring and tool failure detecting projects[Javed, 1996][Lung,
1995][Zilouchian, 1995][Kamarthi, 1994][leopold, 1994][Kurapati, 1992]. The main purpose is
the “rapid replacement of flexible human workers who have high quality sensory interpretative
abilities”[ ]- The system then have the ability to make decision itself, just
like what a human worker does. The technique used is pattern recognition technique, which is
the common way of thinking of a human. There are two kinds of ANN, supervised and
unsupervised. The general classification of the ANN is based on the training procedures.

Supervised network operates with an array of desired output, while unsupervised learning
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network works without desired output. However, all the other procedures are similar. The main

architecture of the ANN is described in Chapter 4.
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Chapter 3

Acoustic Emission (AE): Theoretical Background

(Note: There are many excellent books on AE. The following discussion is largely

compiled from information available in [?].)

3 .1 Development of AE

During the past 40 years, extensive developments in non destructive testing (NDT) have
taken place- The traditional methods based on ultrasonics, readiography, eddy currents and
penetrants have especially benefited from advances in instrumentation. Techniques based on
different physical phenomena such as exoelectron emission, holography, thermography, and
nuclear magnetic resonance have shown promise of eventual evoluton as practical NDT
methods. Acoustic emission (AE) which deals with the very high fequency (i.e. way beyond the
capacity of the human ear) noises made when materials deform or fracture is a technique
based on entirely new concepts which has progressed to a practical NDT.

AE can be used in the laboratory as a research tool or to assure safety. Studies of
Barkhausen noise, the martensitic transformation, corrosion, etc fall in the former category.
Use in the petrochemical or allied industries, for weld monitoring, for testing reinforced plastic
installations or machined parts are examples of the latter classification. AE can be used with

many different materiils and in many different ways.

3.2 The nature of AE

Most materials emit AE during deformation. In any situation involving the redistribution of
energy at least some energy will be available as AE — and corrosion, transformation is
included along with deformation and fracture. If there is no materail change, there will be no
redistribution of energy and there will be no AE. AE activity only appears as the result of
physical activity or change. Furthermore AE occurs at the same time as the physical activity
occurs. Using modern scientific instrumentation a detectable amount of energy is produced as

the result of most activities.

3.3 Theory of AE
3.3.1 Sources of AE

Source identification is necessary so that the behavior of the materail can be predicted
and in order that a meaningful approach can be made to modelling sources. As well ,
information about unwanted (extraneous) sources is also needed, to assist in the positive

identification of damage related AE in real situations.

3.3.2 True Mean Square (TMS) Values
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Root mean square (RMS) measurements are often made with an instrument called a true
RMS meter. However, most of the indicators display to some extent frequency and wave
shape. Commmercial equipment often provide an RMS capability and the makers have gone
to a great deal of trouble to ensure that frequency effects are minimized. The value of RMS
measurements lies in their ability to differentiate between large and small signals. Thus it is
common to use ring down and RMS measurements in conjunction. For those unable to afford
an RMS meter a high speed rectifier gives similar answers.

The energy associated with an AE event is dependent variously on the source sensor
distance, frquency effects, differing attenuation of different wave types and it is hard to build
suitable instrumentation. Furthermore it is difficult to see how a sensible answer can be
obtained from a heavily conditioned signal. Nonetheless it is considered by some workers to
be the most important of the single figure indicators.

The first attempts at energy measurement were by Beattie and Jaramillo [?], who put
together a device suitable for laboratory use. Shortly after Beattie compared various
techniques for energy analysis — showing how RMS and energy values are related and
stressing the need for broad-band measurements, Duncan showed that the area under the
envelope of the signal was related to the energy of the signal and that it was true even for a
band-pass limited situation [?]. However his idea of band-pass limitation was sufficient to
cover in excess of the normally used AE range, say, from 10 kHz to 2.2 MHz. He compared
his results with a RMS voltmeter and decided that energy could be obtained from squaring the

RMS signal.The squared value is termed as True Mean Square (TMS).

3.4 AE Sensors

The sensors (transducers) first used in AE research were PZT (lead zirconium titanate)
accelerometers chosen to have the highest sensitivity consistent with a high frequency
response. In the interests of simplicity and greater sensitivity the backing mass was soon
discarded, leading to a design which was to remain essentially the same to the present time.

The ideal transducer should be small, highly sensitive to a specified parameter, easy to
couple to the workpiece, cheap and easy to construct. In addition, it should exhibit its high
sensitivity over a wide frequency range whilst maintaining a linear response, and it should
have a simple dependence on a single parameter such as displacement normal to a surface.
Such sensors are not presently available and the imperfections of existing devices should be
noted and understood.

Sensors based on the use of PZT material are cheap to produce and robust in use but
their characteristics are far from ideal. The few types of presently available transducers having
better characteristics are really only suitable for laboratory usage.

The sensing element usually comprises a single disc of PZT poled in the thickness
direction which when unclamped will possesses a well-defined natural frequency largely

dependent on thickness. The flat surfaces are covered with a conducting material. e.g. silver
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for the reason of electrical connection. To ensure ease of handling, the element is enclosed in
a conducting, metallic, non-magnetic cylindrical case and generally a plug is attached. One
surface of the silvered disc is glued to the inside bottom of the case and a lead is attached,
using conductive cement, to the other surface of the disc. With available pressure sensitive
adhesives, sufficient ohmic contact is readily made between disc surface and plate; in any
case separation distances are small and capacitative compling is likely to be adequate in
many situations. Invariably the cable between transducer and preamplifier is kept short. It is of
shielded coaxial material with the shielding connected to an earth point — often quite simply
via the connector to the equipment earth point. This gives a certain amount of protection
against EMI (electro-magnetic interference). Added protection is obtained from an insulation
wear plate, attached to the bottom of the case, which helps to prevent the formation of earth
loops.

Problems with low signal/noise ratios can be addressed by filtering and by using resonant
sensors. A PZT sensor is naturally resonant but the various modes of vibration of the disc are
extensively cross-coupled; thus the sensor does not have a simple response curve but one
which comprises a dominant peaks.

Some transducers have been made from laminar material of an irregular shape in an
attempt to improve frequency response. An interesting practical technique known as inductive
tuning involves connecting a small inductance across the terminals of the transducer as close
as possible to the sensing element. Resonant peaks can be enhanced and shifted by varying
the value of the inductance. Naturally the technique is sensitive to lead capacitance and is
best suited to permanent transducer installations.

Adding protection against EMI is sometimes obtained by using a high common mode rejection

capability of the differential amplifier

Sensors can be selected base on the following criteria.

e Availability: Sensor costs are not negligible and a complete range of sensors is not
normally available for immediate use. Hence, it should take the availability into account.

e Sensitivity: Estimates can always be made of the expected AE activity but in general the
most sensitive sensor will be chosen which has the best frequency response, the smallest
size. Also the sensitivity should be kept constant over the chosen frequency band.

e Frequency response: Waves propagating in structures which approximate to plates or
shells can often be characterised in terms of mode and frequency; a sensor can be
chosen to work or avoid a particular frequency. It is possible to choose a sensor having
maximum sensitivity to AE and minimum sensitivity to background noise.

e Size: It is possible to minimise the timing error in location measurement by shortening the

distance between the active contact area of the sensor and work-piece.

3.5 Calibration of AE Sensors
3.5.1 Calibration is defined as the correlation of readings of an instrument with a standard.

This was especially troublesome until suitable simulated sources of AE were developed.
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Calibration of a sensor is carried out by the operator. Nelson Hsu [Hsu, 197?] invented the lead
pencil break as a suitable simulated source of AE. A simple jig has been developed which
ensures that a constant angle and length of lead is maintained. A lead pencil is often used and
the most suitable lead appears to be 0.5mm diameter 2H material. It is possible to measure
the initial load applied to the lead and this is often done in laboratory situations. Triggering of

apparatus by the fracture is also possible by making resistance measurements.

3.5.2 Calibration procedures

Calibration means the measurement of output given a known input. Calibration
procedures may vary depend on the chosen calibration method. Providing a suitable known
AE input presents problems because information is still lacking about the nature and size of
the AE event at its source and about its distortion as it propagates through a structure. As will
the importance of specimen dependence is not always will understood. In the past, reciprocity
techniques for calibration of transducers have always been highly attractive on paper but
difficult to apply.

At least two needs can be identified. First need is to specify the performance of a transducer
and second is to relate signal output of an installed sensor to the AE event at its source. There
is also the need to choose calibration parameters. Clearly the effects of propagation and

coupling can be eliminated.

3.6 Some uses of AE

AE has been used to detect collapse of bubbles in the blood stream, to measure
hydrogen content by evaluating embattlement, to quantifies atmospheric smog by monitoring
crack growth changes in given material, to measure previously attained maximum pressures
by utilising the Kaiser effect and equipment is available for the detection debris left behind
during the manufacture of jet engines. Vibro-acoustic emission is a recent Rolls-Royce
development which is fully described by its title — signals are produced when components
are vibrated. AE has been used to study chip formation during the machining of metals and
appears to have possibilities for use in process control. A model has been developed which
allows the mode of chip formation, the chip-tool contact length, the tool-flank wear to be
identified or measured.

Although forces, power consumption, temperature are readily measured in the laboratory
it seems difficult to make these measurements in an industrial situation. AE count rate and
RMS measurements have been used to identify changes in plastic deformation in the shear
zone at the tip of the cutting tool which is understood to be the principal source of AE. AE has
been found to increase with feed and cutting speed and is sensitive to the depth of cut . It was
observed that AE activity changed dramatically as the tool wore which is in contrast to metals.
It is because the chip changed in shape from short discontinuous to long continuous. AE has
been used to characterise hardboard but the attenuation is very high and signals can only be

detected close to the sensor. The distance should be within about 6cm .
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Chapter 4
Backpropagation (BPN) Networks: Theoretical Background

(Note: The contents of this chapter have been significantly influenced by [?, ?, and. ?])

4.1 Introduction to artificial neural nets (ANN)

A human brain continually receives input signals from many sources and processes them
to create the appropriate output response. Our brains have billions of neurons that
interconnect to create elaborate "Neural networks". These networks execute the millions of
necessary functions needed to sustain normal life. For some years now, researchers have
been developing models, both in hardware and in software, that mimic a brain's cerebral
activity in an effort to produce an ultimate form of artificial intelligence. Many theoretical
models (or paradigms), dating as far back as the 1950's, have been developed. Most have
had limited real-world application potential, and thus, neural networks have remained in
relative obscurity for decades. The backpropagation paradigm, however, is largely responsible
for changing this trend. It is an extremely effective learning tool that can be applied to a wide
variety of problems. Backpropagation related paradigms require supervised training. This

means they must be taught using a set of training data where known solutions are supplied.

4.2 The basic structure of backpropagation nets (BPN)

421 Backpropagation type neural networks process information in interconnecting
processing elements (often termed neurons, units or nodes — we will use "nodes"). These
nodes are organized into groups termed layers. There are three distinct types of layers in a
backpropagation neural network: the input layer, the hidden layer(s) and the output layer. A
network consists of one input layer, one or more hidden layers and one output layer.
Connections exist between the nodes of adjacent layers to relay the output signals from one
layer to the next. Fully connected networks occur when all nodes in each layer receive
connections from all nodes in each preceding layer. Information enters a network through the
nodes of the input layer. The input layer nodes are unique in that their sole purpose is to
distribute the input information to the next processing layer (i.e., the first hidden layer). The
hidden and output layer nodes process all incoming signals by applying factors to them
(termed weights). Each layer also has an additional element called a bias node. Bias nodes
simply output a bias signal to the nodes of the current layer. All inputs to a node are weighted,
combined and then processed through a transfer function that controls the strength of the
signal relayed through the node's output connections. A nodes operation is shown below. The

transfer function serves to normalise a node's output signal strength between 0 and 1.
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Figure 4.1 The back propagation network [?]

4.2.1 Input and output layers

The input layer of a neural network has the sole purpose of distributing input data values
to the first hidden layer. The number of nodes in the input layer will be equal to the number of

input data values in the model.

4.2.2 Hidden processing layers

Choosing the number of hidden layers and the number of hidden nodes in each layer is
not so trivial. The construction of the hidden processing structure of the network is arbitrary.
While there is normally a large envelope of hidden layer constructions that yield like results,
the importance of selecting an adequate hidden structure should not be underestimated. Many
factors play a part in determining what the optimal configuration should be. These factors
include the quantity of training patterns, the number of input and output nodes and the
relationships between the input and output data.. It may often be tempting to construct a
network with many hidden layers and processing units--falling into "the bigger the brain the
better the model" trap. This philosophy can easily result in a poorly performing model. When a
network's hidden processing structure is too large and complex for the model being
developed, the network may tend to memorise input and output sets rather than learn

relationships between them. Such a network may train well but test poorly when presented
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with inputs outside the training set. In addition, network training time will significantly increase
when a network is unnecessarily large and complex.. Generally, it is best to start with simple
network designs that use relatively few hidden layers and processing nodes. If the degree of
learning is not sufficient, or certain trends and relationships cannot be grasped, the network
complexity can be increased in an attempt to improve learning. A plausible starting point for
the loan application model would be to use 2 hidden layers with 3 to 4 nodes per layer. If this
design does not train sufficiently, the size and complexity of the hidden structure can be

increased.

I ¥

Ouiput

Figure 4.2 Input-output view of BPN node

It has been demonstrated theoretically that for a given network design with multiple
hidden layers, there will always exist a design with a single hidden layer that will learn at an
equivalent level. However, in practice, it is usually better to employ multiple hidden layers for
solving complex problems. To adequately model a complex problem, a single hidden layer

design may require a substantial increase in the number of hidden nodes compared to a 3, 4
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or 5 hidden layer construction. In simple terms, a single hidden layer design with 10 nodes
may not learn and perform as well as a network with two hidden layers containing 5 nodes
each. Multi-hidden layer networks tend to grasp complex concepts more easily than networks
with one layer. One reason for this is that the multi-hidden layer construction creates an
increased cross-factoring of information and relationships. Thus, a network's learning ability is

controlled by both the total number of hidden layers and the total number of hidden nodes.

4.2.3 Network connections

Another network design consideration concerns how to control the network's
connections. Input information can be channelled and processed in a localised area of the
network. "Pass-through" nodes can be constructed that receive only one input connection
from the preceding layer and pass that information down to the next layer. This has the effect
of creating connections that skip a layer. While the connection editor gives the modular almost
unlimited flexibility in designing a network, the fact is that the vast majority of designs work

best fully connected.

4.2.4 Transfer functions

A node's transfer functions serves the purpose of controlling the output signal strength for
the node (except for the input layer which uses the inputs themselves). These functions set
the output signal strength between 0.0 and 1.0. The input to the transfer function is the dot
product of all the node's input signals and the node's weight vector.

This sigmoid function is the most widely used function for backpropagation neural
networks. The sigmoid function is represented by the mathematical relationship.1/(1+e-x).
The sigmoid function acts as an output gate that can be opened (1) or closed (0). Since the
function is continuous, it also possible for the gate to be partially opened (i.e. somewhere
between 0 and 1). Models incorporating sigmoid transfer functions often help generalised
learning characteristics and yield models with improved accuracy. Use of sigmoid transfer
functions can also lead to longer training times.

The Gaussian transfer function significantly alters the learning dynamics of a neural
network model. Where the sigmoid function acts as a gate (opened, closed or somewhere in-
between) for a node's output response, the Gaussian function acts like a probabilistic output
controller. Like the sigmoid function, the output response is normalised between 0 and 1, but
the Gaussian transfer function is more likely to produce the "in-between state" It would be far
less likely, for example, for the node's output gate to be fully opened (i.e. an output of 1).
Given a set of inputs to a node, the output will normally be some type of partial response. That
is the output gate will open partially. Gaussian based networks tend to learn quicker than
sigmoid counterparts, but can be prone to memorisation.

The hyperbolic function counterparts to the sigmoid and gaussian functions are the
hyperbolic tangent and hyperbolic secant functions. The hyperbolic tangent is similar to the

sigmoid but can exhibit different learning dynamics during training. It can accelerate learning
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for some models and also have an impact on predictive accuracy. Experimenting with transfer
functions for each individual model is the only conclusive method to determine if any of the
non-sigmoid transfer functions will offer both good learning and accuracy characteristics.

For most modeling tasks, the sigmoid function should at least be a baseline model to
measure results. A general rule of thumb is that the sigmoid will produce the most accurate
model; but be slower learning. If you intend to frequently train similar models and training
speed is critical, different combinations of transfer functions, including hybrid networks, are

worth investigating to find faster training models that exhibit acceptable accuracy.

4.3 Programming versus training

Traditional programming techniques requires that someone create an algorithm. While
for some problems designing the sequence of instructions is stragihtforward, for many real-
world problems it is very difficult to create an algorithm. Imagine trying to write a program that
could recognise a person's face. There are many variations that would have to be taken into
account. For instance, is the person smiling or frowning?

Neural networks, in contrast to being programmed, are trained. This means that
examples are presented to the network, and the network adjusts itself by some learning rule
(based on how correct the response is to the desired response). Therefore, you feed plenty of

representative examples to a neural network.

4.4 Neural networks versus expert systems

Neural networks, expert systems and fuzzy logic collectively make up the field of artificial

intelligence. However, they differ significantly from each other, as well as from traditional
programming. Expert system differ from traditional programming in that the knowledge base is
separated from the means of processing the knowledge( the inference engine). This allows
additional knowledge to be added to the system without reprogramming.
This technique requires that an expert knowledgeable in the relevant area be available, so that
rules can be created to encode knowledge. An example of a rule might be "if there is a large
amount of facial hair around the mouth, ten the person is a male." Confidence factors are
often added to rules, such as "if there are earnings hanging from the ear, the terson is a
female- confidence 85%."

When developing neural network solutions to a problem, neither the knowledge nor the
explicit rules for processing the knowledge are coded by the programmer. Instead, the neural
network learns the rules for processing the knowledge. This is done by adjusting the weight
values in a highly connected network based on the example data. You can think of a neural
network as a very general model that is parameized by the adjustable weights. Therefore, you
don't need access to an expert in the relevant knowledge domain to develop a neural network
(although such an expert may be essential in selecting and preparing the data that is

presented to the network).
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An interesting point is that expert systems can tell you how they arrived at a particular
answer, but neural networks can't always do that. For the same reason that the complexity of
the problem prevents experts form telling you exactly how they arrived at an answer, this

information may not be easily available from a neural network.

4.5 Neural networks versus statistics

A knowledge of statistics is excellent preparation for appreciating the power and flexibility
of neural networks. In statistic, one must often make many assumptions about the data, and
must sometimes limit the analysis to a certain number of possible interactions. By contrast
from a practical point of view, neural networks are basically "non-parametric," although in
theory one can think of a neural network as being parametized by its weights. In addition,
more terms can be examined for interaction by a neural network, since the network will, we
expect, place its emphasis on those inputs that help to predict the output. By allowing more
data to be analysed at the same time, more complex and subtle input interactions are
possible. It should be stressed that statistics can be helpful in understanding the data, which

can lead to developing a better neural network model.
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Chapter 5

Experiments and Observations

5.1 The equipment used

5.1.1 The milling machine

The milling machine used in this experiment is a vertical milling machine which is
commonly installed in the shop floor. The bed can also by fed in the x, y, and z axes manually
or automatically by setting the feed rate. Most milling machines are equipped with power feed
for one or more axes. Power feed is smoother than manual feed and, therefore, can produce
a better surface finish. Power feed also reduces operator fatigue on long cuts. On some

machines, the power feed is controlled by a forward reverse lever and a speed control knob.

5.1.2 The dynamometer

The three component dynamometers Types 9265 is piezoelectric transducers for
measuring the three orthogonal components of a force. The dynamometers have high rigidity
and therefore high natural frequency. The high resolution enables small dynamic changes of
large forces to be measured. For each of the three force components a proportional electrical
charge is generated dynamometer. These charges are converted into analogue DC voltages
in the topped charge amplifiers. These voltages can then be recorded, displayed or processed
as required. There is drift in z channel, why? It is advisable either to connect the dynamometer
to the coolant circuit of the machine tool, or to start measuring the cutting force only when
there is no longer drift in the z channel. The dynamometer is a precision instrument. Its
inherent accuracy can be exploited and maintained only if it is fitted and handled with due
care. Any failure fixture will introduce internal stress which may even make damage on the

device.

5.1.3 The AE transducer
The AE sensor used was a piezo-electric sensor form Kistler with a wide bandwidth of

about 1 MHz. The sensor has high and low pass filters and a resonant frequency of 100 —
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900kHz. A review of literature showed that, in metalcutting, most of the work with AE has been
done in the frequency range of 100 —500kHz . In this range, it is fairly safe to trust the sensor
dynamics without worrying about the AE signals being easily contaminated with lower
frequency machine harmonics. The CRO used in the experiments was HP 54602A with upper
limit of frequency of 150 MHz.

The technical data of the equipment are listed as below.

Figure 5.1 A View of the AE sensor

5.2 Force measurement

Force measurement is carried out at the same time when AE TMS is recorded. The
calibration procedure should be completed before any measurement is undertaken. Because
the measurement process involved three devices, the dynamometer, the charge amplitude
and the plotter. The calibration of there device is very important. The procedures in calibration
are listed in the user manual of that machine. The general steps in the force measurement are

stated below.

Step 1- Connect the dynamometer to the amplifier. Connect the amplifier to the plotter. Make

sure all the connections are correct.

Step 2 - Adjust the position and the scale factor of each pointer so as the full scale deflection
of the point will not exceed the margin. The recommended scale factor for end milling is

stated below.
Fx - 200mV
Fy - 200mV
F,-50mV

Step 3 - before starting the cutting process, turn the paper motor on, otherwise the paper will

not move and the measured cutting force will only “vibrate” within a line.
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Step 4 - after the cutting process has finished, turn off the motor for not to waste graphic

paper.
Step 5 - repeat step 3 to 4 until all the trail testes has been completed.

Step 6 - tear out the graphic paper and start the measurement by using a ruler and a

calculator.

Step 7 - draw a line at the mid point approximately as Figure shown below.

AN =

VY

Figure 5.2 Force measurement

Step 8 - measure the distance between the base line and the drawn line. The Base line is the

line when there is no cutting.

Step 9 - Calculate the cutting force by submitting the measured distance into the equation

M
— *S5*5000
25

where M is the measured distance

S is the scale factor

Step 10 - tablized the cutting force with AE TMS for each ftrial.

5.3 Calibration of the AE transducer and signal processing system

Before conducting the experiments, the involved equipment was be carefully prepared
so that the effect of noise and other uncertainties can be minimized. Noise can come from the
measuring equipment, the amplifier, the milling machine and/or the surroundings. Also,
periodic calibration of AE sensor is very important. One needs to make sure that one is indeed

measuring AE form the phenomena being studied and not from some extraneous source.
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The AE measuring device was first to be calibrated in order to elimination of the effect of
AE noise, to fine tune the setting so as to obtain the best measurement and to calibrate the
HP oscilloscope to ensure that the measurement was exactly what was intended. Background
noises in the laboratory premises are mostly electric pulses which are propagated and get
mixed with the AE measuring system. These could be burst signals having the same
frequency content as acoustic signals emitted from the test material, and the amplitude is
often comparable to the acoustic signals. Therefore, it is usually impossible to eliminate the
effect by setting the frequency bandwidth and the threshold level. The only noise elimination
method then is through shielding and averaging.

The Hugh-NielSen test was used for calibration.

Step 1 - Prepare 5 to 10 2H pencils ,a pencil sharpener, a steel bar with a tapped hope on it.

The hole was used to attach the sensor on to the plastic. The cross on the surface

represents the point where 0.5mm 2H pencil tips were broken for calibration purpose. The

break action was taken at an angle of 30 and the tip length was 1mm.

Figure 5. A view of the steel bar for calibration

Step 2 - screw the sensor onto the surface of the bar. The clamping force should not be very

large. Otherwise, the sensitive sensor will be damaged.

Step 3 - connect the CRO is a plotter. Turn on the CRO and wait for it warm up.

Step 4 - adjust the frequency resonant range within 1 MHz, the volt / unit to 1 V and the time
base to 20 ms. Set the trigger level for about 100mV to prevent the effect of noise. The
trigger level, time base and volt / unit can be changed throughout the experiment depends
on the situation.

Step 5 - slowly put the pencil tip in the surface of the steel bar. The distance between the
active point and the sensor is 2 cm. Push the pencil downward quickly so that the tip will
break immediately.

Step 6 - output the screen to the plotter

Step 7 - repeat step1 - 6 with another sharpened pencil
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5.4 AE TMS measurement
There are two parts in these testes which greatly involved human error. One is the AE

TMS measurement and the other is force measurement. The instruction of AE TMS

measurement is listed below.

Step 1 - Connect the CRO to the sensor. Care must be taken on the connecting cable.

Step 2 - Turn on the CRO and input the settings which are obtained during calibration stage.
However, the time base, volt / unit can be changed during the cutting for a full scale
display. Remember to set the probe to 100.

Step 3 - screw the transducer on the workpiece

Step 4 - Start the cutting process with different cutting material and cutting parameter. Start
recording the Vims value on the screen. This will be the average volt of the input signal
and is the AE RMS.

Step 5 - To obtain the TMS, just simply take square of AE RMS.

Step 6 - Tablized the AE TMS with the force measured.

Step 7 - Repeat step 3 to 6 with different workpiece and cutting parameters.

The general human error is coming from the RMS reading. The RMS value displayed on
the screen keep changing during the cutting. To minimise the reading error, the RMS value
during the cutting should be recorded down and eventually take the average of the recorded

values. Set the calculated as the ultimate AE RMS.

5.5 The experimental conditions
5.5.1 Work materials

The work materials used are the most common

5.5.2 End mills

The most frequently used tool on a vertical milling machine is the end mill. End mills are
made in either a right-hand or a lift-hand cut. By viewing the cutter from the cutting end, the
two kinds of cutters can be identified. In this experiment, a right-hand cutter which rotates
counterclockwise is chosen. The helix of the flutes can also be left or right hand. Figure are

the different views of the single end, four flute, right hand end mill used in these experiments.

Figure 5.
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A right hand helix flute angles downward to the right when viewed form the side. Four
flutes end mills may have either center cutting teeth or a gashed or center drilled end. End

mills with center drilled or gashed ends cannot be used to plunge cut their own starting holes.

5.5.3 Cutting conditions

The cutting conditions in these shop floor experiment are similar to the experiments
carried out before. No coolant is used during metal removal processes even it is

recommended for most cutting processes.

5.6 Experiments with different work materials
The steps of these testes are the same with section 5.7 except to keep the cutting

conditions constant but different work materials. There are totally five materials available, mild

steel, steel 4140, soft aluminium, aluminium 6061 and brass.

The steps are listed below.

Step 1 - prepare the different workpieces with good machined surface.

Step 2 - set the required cutting parameter, feedrate, cutting speed, axial depth of cut and
radial depth of cut before cutting.

Step 3 - clamp the workpiece into the dynamometer and attached the transducer on to the
workpiece surface.

Step 4 - start the cutting process, at the same time record down the AE TMS and cutting
force.

Step 5 - unclamp the workpiece from the base.

Step 6 - Repeat step 3 - 5 with different work materials.

The setting of cutting parameter is tablized below.

Cutting speed/ feed rate depth of cut /mm radial depth of lubricant
RPM /mm/min cut /mm
450 189 2 10 no
Table 5.

And all the testes are under the same cutting parameter.

5.7 Experiments with different cutting conditions
The only material for these experiments is mild steel. The steps of due with different cutting

conditions are similar in Section 5.6.
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Chapter 6

Training and testing BPNs for force prediction

6.1 BPN software used

The neural modeling system used in this project is known as Qnet V2.7. It executes in 32 bit
protected mode of CPU. Networks sizes is only limited by the size of computer system’s
memories and hard disk capacity. It offers a capability of designing an advaned
backpropagation neural networks just by several easy steps. The training data and testing
data are grouped in the format of ASCII file or any data file output from MS Excel. The most
benefit it offers is that one can integrate the source code into his application after he found
that the designed network gives out best accuracy.

The general system requirements are listed below.
® 386,486 or Pentium or higher CPU

® \Windows 95

® VGA or higher graphics adapter

® 4 Mbytes of system memory

® Minimum 2 Mbytes of free hard disk space for installation

6.2 Learning using only the cutting conditions as inputs

In this training cycle, only cutting condition parameters are involved, depth of cut a,, radial
depth of cut a,, feed rate f, and cutting speed RPM. The architure of the BPN is shown as

below.

@
9 ‘ ANN g force

Figure 6.1 Four inputs ANN
The general training procedure and testing procedure are as described in Chapter 4.

The summaries of the procedure are listed in steps below.
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Step 1- obtained the data sets from the shop floor experiment. Prepare and verify the data for

reliability by plotting the data into graphs and take out the unstanding point.

Step 2 - divided the data set into two groups, one as training cases, and the other as testing
cases. The ratio of training to testing is approximately 4 to 1. As there are only 180 sets data,
it is best to put 140 sets into training group and the remaining into testing group. It has to be

stressed that the data for the two groups should be selected randomly.

Step 3 - start to input the data into the ANN with different parameters according to the

sequence from the following table.

Trail cycle momentum hidden layer hidden nodes
1 10000 0.8 1 2
2 5000 0.8 1 2
3 1000 0.8 1 2
4 500 0.8 1 2
5 10000 1 1 2
6 10000 0.5 1 2
7 10000 0.1 1 2
8 10000 0.01 1 2
9 10000 0.8 2 2
10 10000 0.8 3 2
11 10000 0.8 4 2
12 10000 0.8 1 5
13 10000 0.8 1 8
14 10000 0.8 1 10

Table 6.1 Parameter for different trials

Step 4 - save the networks for each trail for later testing process. Eg. The filename can be

taken as the trail no. of easy retrieval.

Step 5 - After training processes have been completed. It should now start the testing
processes. Input the testing cases into the trained network for each combination, and record

down the accuracy.

There is another experiment which combines the data from the paper by Lin[ ] The
procedures are same as above except this time more cases are used. There are 34 cases

and it will be divided proportionally into 4 to 1.
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6.3 Learning when the inputs array is augmented by AE TMS
The ANN is used to predict cutting force in this section. The advantage of using a sensor input
as an input array has been discussed in the above chapter. The architecture of the ANN is

sketched as below.

{In} 0}

ANN
g force

©IGI010

AE
Figure 6.2 Five inputs ANN

The steps of training and testing cycle are absolutely the same with section 6.2. The

only difference is the larger input array.
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Chapter 7

Results and Discussion

7.1 AE TMS magnitudes for different work materials
The AE TMS tested with 5 kinds of materials are plotted as a histogram for easy

comparasion.

Brass Steel 4140 Aluminium 6160 mild steel soft aluminium

TMS VvV 40 9.6 6 2 1.2

Table 7.1 AE TMS of different materials

40

40 -

35 -

30 -
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25 B Steel 4140
20 | O Aluminum 6160
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5 _
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Figure 7.1 Histogram of AE TMS against different materials
All the testes are carried out under the same cutting condition stated as below.

And the cutting tool is used as the previous four flute end mill. It is interesting to see that,
brass has the highest AE TMS within the five chosen material. There is an extra hardness test

which is used to verify the five materials hardness.

Brass Steel 4140 | Aluminium 6160 Mild Steel Soft Aluminium

Hardness/ HRB 78 105.3 57.4 89 -

Force/ N 2000 2400 900 2000 1000

Table 7.2 Hardness and cutting force of the chosen material
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From the hardness table, it is shown that the steel 4140 has the highest hardness. The
harder the material, the more force required for cutting. The only exception is happened for
Soft Aluminium. The hardness test of the material is unknown because it is much softer even
out of the hardness test range. The measuring machine shows negative sign which is
meaningless. The high force for cutting soft aluminium is not because of its hardness, but for
its stickiness. The material adheres on the cutting tool like a cream. This explains why it
requires larger force than the others.

Another observation is that, even steel 4140 is the hardest., it generates less AE energy
compared to Brass, which is far more softer than it. And the same observation is happened
with aluminium 6061 and Mild Steel. These can be conclude that, the AE TMS has no
immediate relationship with material hardness.

The side observation is that, only mild steel and steel 4140 emit smoke. These is because of
the energy is generated into heat energy and temperature thus increases. At the same time
there is some oil inside the steel. Together with the influence of high temperature, the oil

becomes vaporised. That is the reason of only steel will give out smoke.

7.2 Effectiveness of BPN when the input array is restricted to cutting conditions alone
The data obtained in shop floor experiment will be feed into a backpropagation neural
network. Some modification will be first make on the input cases. Some data will mixed with
the experimental data in order to increase the reliability of the old one. The tables below are
the training result of the mixed data. The main focus are paid on the change of momentum, no

of hidden layer, no. of hidden nodes and training cycle.

Fx Fy Fs Fr

Table 7.3 Training accuracy vs different cutting force (without AE)
(Cycle=10000, momentum=0.8, Hidden layer=1, Hidden nodes=2)

In this test, Fx, Fy, Fz and F; are all introduced. The difference among this four force to the
training accuracy are recorded and compared. It is obsively seen that Fr will give the best
accuracy. This is may be the reason why Liu use resultant force in his experiment. There is no

empirical explanation to why Fr give better accuracy. It's just the result.
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Training cycle

500 1000 5000 10000

F, 13.5 13.4 13.5 8

Table 7.4 Training cycle vs Fr (momentum=0.8,

Hidden layer=1, Hidden nodes=2)

momentum
1 0.8 0.5 0.1 0.01
Fr 13.4 8 11 13.16 12.144

Table 7.5 Momentum vs F; (Cycle=10000, Hidden layer=1, Hidden nodes=2)

hidden layer
1 2 3 4
Fr 8 10.5 12.2 9.6

Table 7.6 Hidden layer vs F, (Cycle=10000, momentum=0.8, Hidden nodes=2)

hidden nodes

Fr 9.5 8 10.2 11

Table 7.7 hidden nodes vs F, (Cycle=10000, momentum=0.8, Hidden layer=1)

It is obviously that only increase of training cycle and no. of hidden layers will not
improve the performance. And the improvement can be very large, from above 8% down to

less than 1.5% when using Fr instead of Fx.
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However, the accuracy of the system doesn’t show good improvement by the

change of no. of units and the momentum. According to the literature, the smaller the

momentum, the greater accuracy of the ANN. However it is not the case in this experiment.

The optimize choice of the learning setting is:

Momentum

Training Cycle

hidden layer

Hidden nodes

0.8

10000

1

5

Table 7.8 The setting for a good ANN

And when accompanied with the use of AE sensory input, the accuracy can be very

high. It has to be recognized that the ANN training accuracy is maximized by chance. It has to

be training and training again with different learning setting until the RMS level is accepted. In
this experience, the accepted level is 3%. All the RMS value above this threshold value will be

considered as failure, and another training will be arranged with different training settings.
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The input array this time has one more member, AE TMS, which is the sensory input

from the milling process. The accuracy of augmented ANN is tablized below.

Fx

Fz

Fr

1.1

1.05

2.01

0.7

Table 7.9 Training accuracy with differnet cutting force (with AE)

Training cycle

500 1000 5000 10000
Fr 5.2 5.5 6.5 0.7
Table 7.10 Training cycle vs Fy (momentum=0.8,
Hidden layer=1, Hidden nodes=2)
momentum
1 0.8 0.5 0.1 0.01
Fr 6.5 0.7 7.8 5.2 9.2

Table 7.11 Momentum vs F; (Cycle=10000, Hidden layer=1, Hidden nodes=2)

hidden layer

Fr

0.7

1.03

2.1

1.05
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Table 7.12 Hidden layer vs F, (Cycle=10000, momentum=0.8, Hidden nodes=2)

hidden nodes

F, 1.01 0.9 1.05 1.06

Table 7.13 hidden nodes vs F, (Cycle=10000, momentum=0.8, Hidden layer=1)

The training and testing process shows similar trends to that without AE. However, The

results are sound good, within 3% level.

7.4 General observations

During the shop floor experiment, it is noticed from the CRO reading that there are some
peaks occurring at the tool entrance and exit in TMS. During the cutting process, only
continuous variation of the signal level, fast or slow, is observed. The fast and slow graphs
were directly depended on the time constant of AE signal. Such observation will be paid
attention on the future development.

For the ANN, the relationship between input or size of input array should be kept as
simple as possible. The more complex the network input, the more hidden nodes are needed.
This will increase the response time also. And this is prohibited as fast deterministic power is

a “must” in shop floor. It is observed that the larger the training cycle, the accuracy increase

gradually. And , as Fr is mainly depended on Fy, improvement on Fy is reflected to Fr. Say,

when the training cycle is 10000, both accuracy of Fx and Fr is improved to a great amount.

Also, the worst situation is that the learning network is fallen into a local minimum. There
is only one way to prevent it. By changing the momentum, and keep on trying until a global
minimum is found. However, there is no guarantee a global minimum can be located.
However, it is observed that the best momentum for the training and testing cycle is as the
same as that recommended by the software manufacturer.

Another problem associate with the training process is the suitable time to "stop" the
training. The reason for stopping training is very complicated. There is to phenomena happen
to a network, one s convergence and the other is divergence. When the error in the input-

output network is approaching zero, it is convergence. When the calculated error increase
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subsequently, it is divergence. For small sets of input cases, it is far more difficult to determent
the stopping point. The general relationship of a input-output network can not be found out as
easy. However, for a larger set of training cases, the network will suffer from "memorize" the
training pattern rather than to "learn" the pattern. The network becomes less able to due with
the input signal.

There is no general role in determining the splitting of the data. According to the
literature, the learning count meets the most suitable point around 10000. However, one of the
following learning process will involve different no. of learn counts which may shows the
different accuracy with different learning count.

In the past experiment, the experimental data are recorded and often reliability testes on
the data, 180 sets training cases were chosen and the sets were splitted into two group, say
140 and 40 while the former one is for training purpose and the later one is for testing
purpose. The grouped data are then rearranged randomly by a computer in order to minimize
the "memories" effort of the network.

The beautiful data from Mr. Liu has been mixed with my own experimental data to see
whether there is any improvement. Only data with similar cutting condition and end mill are
used. The observation is that there is no great different to the final result. The reason might be

the small size of data from Liu which doesn’t give any influence on my own result.
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Chapter 8

Conclusion

8.1 Conclusions
The above testes confirmed that the prediction of cutting force can be best implemented

by adding a sensing input, AE TMS which is a output from the cutting operation.

Sound result on using AE
extra work on differnet material

The literature had clearly state that the AE measurement is greatly influenced by the tool
wear, tool geometry and the speed of cutting. The first experiment by Dornfeld and Kannatey
were about the correlation between AE signal and the cutting process conditions. However,
the studied experiments were mostly based on the single point cutting, such as turning. In this
study, the focus is paid on the relationship of AE RMS value and the varies cutting parameter
under multipoint cutting process. Theoretically, the AE RMS and the three cutting components
should increase with the increase in cutting speed, axial and radial depth of cut due to the
larger area of shear zone, and tool/chip interfaces. However, the experimental data don't
follow the theory well. And this contradiction always happened in my experiments.

To the experience, there is one assumption that should be take into account. As AE is
emitted as a burst wave. If the distance between sensing point and the source deeps
changing, there will be some effect to the AE intensity measured. In the experimental setup,
the sensor is attached on the workpiece rather than on the tool side. As the tool feed forward,
the displacement of the source will cause distortion on the target AE, and as the distance is
longer. The probability of detecting noise increase. Therefore, a multi-sensor system is
recommended. We can assume the cutting zone as a single point source, and the AE
emission is the summation of all the individual emissions in the zone. The wave emerges in all
direction., and eventually they come into the sensor. If we arrange the sensors with equal
distance from the source, it can be predicted that the detected voltage should be equal. There
are two proposed system and will be explained clearly in next section.

The Huhg - Nicken pencil broken test was implemented successfully. As mentioned in
literature, the test was found to be fairly repeatable. It is recommended that any user of AE
most qualitatively re-calibration the sensor at regular intervals by using this test.

Drawback in AE approach is represented by the dependence of the response on cutting
conditions. It is require to find out the information content of AE on any cutting condition.
However, it is not yet clear what information content an AE signal has. By "information
content", we mean the amount of understanding of the cutting phenomenon the AE signal
provided. This project was not success as one of the hidden aims of this project is to show
how much can the AE related to the end milling. In contrast, force signals are much better
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understand. The reason is that, for each process there are well developed models relating the
input conditions and cutting state to the forces. It requires further research to investigate the
"information content" of the AE.

After the model of AE is well developed as that of force model. It can be used to replace
the measuring of cutting force in most industries. The result will be better system to reduce
manufacturing cost. According to the literature, up milling progress different result as that give
out in down milling. And the investigation of up milling is left for further experiment. Also, only
mild steel is used for the reason of commonly usage in the production shop and the easy
availability in the laboratory.

After the experiment, even the data of cutting forces and AE TMS doesn't show linear
correlation, the result obtained by ANN gives out surprise. By adding a sensory input to the
ANN, the accuracy gradually increase, from around 8% to under 1%. Base on this sound

result, the work will be carried out on future work.

8.2 Suggestions for future work

In the following experience, it is desirable to find out the information content of the AE
during metalcutting. It has to be determined the effect of a various range of workpiece
material, and repeat the past experiences with more changing parameter. The experience is
carried out under specific condition, with specific material, tools and cutting condition. The
result sounds good. The work will be extended to a wide range of cutting condition, work
material and tools.
Also, a multisensor system mentioned earlier should be introduced to minimize the effect of

noise.

Sengor

SEnso EnSOr

Figure 8.1 3 sensors in equal distance triangle
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OO sensor

Figure 8.2 2 sensors system in equal distance

Sensor

where @ is the single point source
Another purpose of the proposed system is to overcome the effect of moving source. IN
the early days of AE, before the computer-based data logger was available, manufacturers
quickly developed extensive multi-transducer equipment based on existing strain gauge
systems.

The reason of introducing the mentioned system is to overcome the effect by
moving sourecs. As the sensor is directly located on the workpiece instead on the tool, the
deformation zone which is the "only" source of AE emittion keeps on moving. The moving
speed of the sources depends on the table feed rate. As AE is propagated in wave form,
themovement is sources will result in variation in AE amplitude. BY untroducing this
multisensory technique, the influence of the displaycement will be minimize. The system

works with three sensors and formed a trangle arrangement.
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