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Abstract 

 

 End milling is one of the most extensively used machining operations generally in modern 

machine shops and particularly on CNC machining centers. Cutting force magnitudes have 

enormous influence on the performance measures of end milling such as tool wear, tool edge 

chipping, tool breakage, work-piece dimensional accuracy. Hence it is of significant economic 

importance to be able to predict cutting forces under varying cutting conditions prevailing on 

the shop floor. The traditional approach of relying on analytical and computational models has 

generally failed to develop the ability to predict cutting forces under shop floor conditions. 

 Much research effort world-wide has been directed in recent years into developing 

intelligent manufacturing systems who can monitor themselves, anticipate problems that 

would be encountered on the next workpiece, and take necessary precautions. Developments 

in  artificial intelligence (AI) have been particularly useful in this context. Amongst AI 

techniques, learning based on artificial neural nets (ANN) has been found to be particularly 

useful. 

 Development of new sensing and sensor fusion techniques have also contributed to 

progress towards developing intelligent manufacturingf systems. Amongst the sensors, 

acoustic emission sensing has been found to be particularly suitable for monitoring machining 

operations.  There is evidence that the true mean square value of AE has a significant positive 

correlation with the energy expended in the deformation and friction zones in machining. 

It also appears that the learning effectiveness of ANN can be improved by augmenting the net 

with real-time sensory information. However, notwithstanding the significant effort put into 

applying ANN and AE to end milling, little work has so far been done towards applying ANN 

and AE for predicting cutting forces in end milling.   

 In view of the above considerations, this project has attempted to predict cutting forces in 

end milling using ANNs augmented by acoustic emission information. To this end, cutting 

forces have been measured for a given cutter-work material-cutting speed-feed rate 

combination in a range of radial and axial depths of cut using a three-component milling 

dynamometer. Simultaneously, the true measn square values of acoustic emission was 

measured using well known acoustic emission sensor placed in the vicinity of the cutting zone. 

Next, using a well known commercially available software called Qnet, back propagation 

networks (BPNs) were trained to learn randomly selected subsets of the measured data. In 

these learning exercises, the input array was restricted to the cutting conditions: cutting speed, 

feedrate, axial depth of cut, radial depth of cut. The network architectures, momentum 

parameters, the numbers of back propagation cycles, etc. were fine tuned to obtain the best 

possible results. The results showed that the force prediction ability of the network could not 

be better than about 3%. Hence, in the next phase, the input arrays were augmented with the 
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corresponding measured values of the true mean square of acoustic emission. It was found 

that the learning ability improved signifiicantly to below 1%. 

 The present project has demonstrated that it is possible to have satisfactory force 

prediction accuracy with neural nets augmented by AE sensing. However, this should only be 

considered as a preliminary finding. Further work covering a much wider range of cutting 

situations and exploring more refined AE signal processing and ANN strategies is needed 

before the full benefit of the approach can be realized.  
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Chapter 1  

Introduction   

 

 

 

1.1  The input-output view of a machining operation 

 This project aims to predict the cutting force magnitudes in end milling. Cutting forces may 

be considered as a subset of the performance outputs from a machining operation [Armarego, 

1996].  This section briefly summarises the input-output views of a machining operation as 

outlined by  them and subsequently refined in [Venuvinod, 1997]. 

 Figure 1.1 shows the Input output view of a machining operation. Inputs are any 

parameters which determine the behaviour of the process. Outputs are any variables or 

parameters which result from the particular behaviour of the process. In this figure, {I}, {P} and 

{O} are stated clearly. The direct relationship among {I}, {O} and {P} are as shown in Figure 

1.1. {I} is the input parameter set, after any machining process {P}, the input set are converted 

into output set {O}. For instance, wood is transformed into paper by a manufacturing process. 

Then wood is one of the {I}, {P} is the mentioned manufacturing process and {O} is the output 

data concerning the process behaviour which is of importance to the process designer. 

  

  

 

    {I}                     [P]                     {O}

    Input                Process                Output

Parameters      Parameters            Parameters

 

  

 Figure 1.1 The input-out view of a machining operation [Armarego, 1996]  

  

 

 [P]
{In} {Op}

{In} = Nominal Input
{Iv} = Unanticipated Input Variations

 P = The Process
{Op} = Perfromance Measure (Output)

{Os} = Output capabele of being sensed

{Iv} {Os}

 

     

 Figure 1.2  The classification of process inputs and outputs [Venuvinod, 1997] 
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 There are two kinds of inputs to a model as shown in Figure 1.2: one is the nominal input 

array while the  other is the array of unanticipated inputs. Both of them are inputs to a process. 

The difference is that, in a nominal input set, all the information is known and the associated 

parameters under our control. However, in the cases of {Iv}, the information might not be 

known or can not be controlled. For instance, when we set the cutting speed of a turning 

machine at a certain value, it is possible to keep the speed in an acceptable range. This 

means the cutting speed is under our control. Another example is by taking the transformation 

of wood into paper. The nominal input is the properties of the raw material, wood. If there 

exists some impurity in the wood and can not be found out before any manufacturing process 

has taken place, the output “paper” may not be in the desired form and may have to be 

rejected. The impurity will then become the “unexpected” input to the transformation process.  

Similarly, a process planner may be excepted to have a tempered structure steel after a 

machining process. However, it is possible that there exist some martensitic structure steel in 

the batch of workpieces. Such unexpected input is not under our control and it will be grouped 

as {Iv}. 

  

 A partial list of the common input parameters to machining operations is given below 

[Armarego, 1996]: 

 Work Material Properties 

 - Mechanical (elastic and plastic) 

 - Thermal 

 - Fracture 

 - Wear 

  

 Tool Material Properties 

 - Mechanical (Hardness, etc.) 

 - Thermal 

 - Fracture 

 - Wear, Diffusion, etc. 

 - Coatings 

  

  Tool Geometry  

 - ISO 3002/1 

 - Chip Former Features 

  

  Cutting Conditions 

 -Cutting Speed 

 -Feed (rate) 

 -Depth of Cut 

 -Radial Depth of Cut 

 -status of dry or wet 
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 With regard to model output, it contains the basic machining performance information. 

Armarego et al have argued that there is a need to quantitatively predict the performance 

output [Armarego, 1996]. 

  

 According to Venuvinod [Venuvinod, 1997], it is more useful to sub-divide the output array 

from a process into two subsets. One is performance output {Op} while the other is sensory 

output {Os}. {Op}can determines the efficiency and effectiveness of the process, while {Os} 

contains variables that can be measured or sensed in real time. There is a possibility of 

overlap of the output. That means one can put the output into either {Op} or {Os}.  

   

 A partial list of {Op } according to [Armarego, 1996] is given below: 

  

 Chip Formation Geometry 

 - Chip Thickness, Length and Width 

 - Chip/Tool Contact Length 

  

 Cutting Forces 

 - 3 forces, torque and thrust, etc. 

 - Cutting Power 

  

 Cutting Temperatures 

- Mean Rake, Mean Flank, etc. 

   - Temperature Field(s) 

  

 Tool Wear and Life 

 - Flank Wear Parameters 

 - Crater Wear Parameters 

 - Groove Wear Parameters 

 - Tool Fracture 

 - Tool Life (Taylor Constant, Index, etc.) 

 - Failure Modes (Entry, Exit Failures,  etc.) 

  

 Surface Finish and Integrity 

 - Surface Roughness and Topology 

 - Residual Stresses 

 - Surface Hardening 

 - Surface Damage  

  

 Component Dimensional Accuracy/Errors 

  - Cutting Vibrations and Chatter 

  

 Chip Form for Chip Control 

 - Classification according to Spaans, etc. 
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 Burr Features 

 - Entry Burr 

  - Exit Burr 

  

  A partial list of {Os} is as follows: 

 Cutting forces using dynamomter 

 Acoustic Emission using AE sensors 

 Cutting Temperature using calorimeters, thermocouples, thermal paints, infrared radiation 

camera, etc.   

 Tool Wear using AE, vision system, cutting force signals, noise, vibration, etc. 

 Tool breakage using AE, cutting force, vibration, noice, induction coil, vibration, etc. 

 Chip clogging using AE, Cutting force, vibration, accelleration signals.  

 Power consumption 

  

 It is interesting to note that, many of  the members in {Os} family can be measured by 

using Acoustic Emission. The relationship between {Op} and {Os} often is that, {Op} can not be 

directly measured. However, by measuring the sensory subset {Os}, it might be  possible to 

predict {Op}. 

  

  

1.1  The importance of being able to predict cutting forces 

Owing to increasing competitive pressures, most machining industries continue to 

face the problem of achieving cost savings.  The cost of a product includes many elements 

such as the cost of materials, the cost of equipment, the cost of tooling, the cost of the 

manufacturing processes, and the cost of rework. 

An ability to predict tool breakage can lead to significant reductions in manufacturing 

costs. One method used in detecting tool breakage is in-process monitoring of cutting force or 

torque. A sudden change in the force amplitude indicates the tool breakage. A large increase 

in the cutting force can lead to tool breakage. Gradual tool wear often leads to a gradual, 

albeit small, increase in the cutting force. Further, an increase in cutting force, in turn, 

indicates an increase in power consumption. Hence, cutting temperatures can be expected to 

rise thus leading to more rapid tool wear.  It is therefore clear that an ability to predict cutting 

forces will facilitate the avoidance of tool breakage and tool wear in industrial practice.  

 The magnitude of the cutting force can also have a direct effect on the work-piece 

accuracy. Elements of the machine tool - fixture- work-piece - tool (MFWT) system deflect 

under the action of the cutting forces. This leads to deviations of the relative path of the tool tip 

from the surface being machined from the programmed path. Consequently, there would be 

significant dimensional errors on the machined part. The traditional answer to this problem is 

increased inspection and rejecting the parts which are outside the permitted tolerance zones. 

However, this approach invariably leads to increased costs of inspection and re-work. The 
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modern answer to this problem is compensation - correcting the CNC program to compensate 

for the errors arising from the deflections of the MFWT system (and other errors such as the 

kinematics and thermally induced errors inherent in the machine tools). Several research 

projects are currently in progress at the City University of Hong Kong aimed at  developing 

such error compensation systems. However, a pre-requisite to the success of such work is the 

ability  to predict the magnitudes of cutting forces from given sets of process input conditions. 

 To measure cutting force, the traditional approach is directly measure the cutting force 

during cutting. However, it is not practical to have a dynamometer located in a shop floor. The 

measuring device is far more expensive compare to a AE sensor. A dynamometer costs 

approximately $300,000 while a milling machine only costs $100,000 and AE sensor worth 

$10,000. It is ten times of a dynamometer against a sensor. Both the sensor and the 

dynamometer are hi-tech material. They have to be take care under any operation. Therefore, 

the installation of a dynamometer is not valuable. 

 

1.3 Current state of force prediction through modeling 

  According to [Venuvinod, 1997], there always exists a network of cause-effect 

relationships within a process, and by analysing these relationships in terms natural laws, it 

should is possible to predict the output {Op} quantitatively. „generality” and “accuracy” are the 

two vital critical point of a model. “generality” is the capability in transporting the model under 

different conditions. It is great to know that if there is an existing model which can  be used for 

a variety of process. Even the perfect model is not available. And “accuracy” is the 

effectiveness and efficiency of a process. The greater the “generality” and “accuracy” of a 

model, the greater is the usefulness of the model.  

  

 Figure 1.3 The three shear planes of metal cutting 

  

 The literature on analytical modeling is too vast to be comprehensively reviewed here. 

Hence, discussion will be limited to shear plane based models. Analytical modeling started 

with Merchant 1944 model for single edge orthogonal cutting [Merchant, 1944]. The 

assumptions include sharp cutting edge, the admissibility of the approximation of a shear 

plane, the constancy of chip-tool friction angle, and the constancy of the shear flow stress on 

the shear plane. The first assumption means that the parasitic rubbing and plowing forces in 

the vicinity of the cutting edge cannot be predicted. The implication of the second assumption 
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is that the theory is applicable only when the shear zone is thin. This approximation is valid 

only for less work hardening materials and at high cutting speeds.  Another problem is that the 

model requires the chip thickness or the shear angle to be known a priori. The first was 

Merchant‟s own solution which provided the upper bound to the shear angle and hence to the 

lower bound of cutting force. Subsequently, many other (approximately 52 according to 

Lindstrom) shear angle solutions have been developed [e.g. Lee, 19?? ]. However, none has 

been found to be universally applicable or robust enough. 

 Merchant‟s approach has been extended to single edge oblique cutting [e.g. Shaw, 19??, 

Armarego, 19??, Zorev, 19??].  In terms of the ability predict forces, these models suffer from 

the same set of limitations as the single edge models. In addition, there is the problem of 

predicting the chip flow angle. Stabler has developed a simple equation stating that the chip 

flow angle is equal to the cutting edge inclination angle [Stabler, 19??]. But this, at best, is a 

very course approximation. 

 More recently, much activity has taken place in extending the shear plane models to  a 

variety of practical machining operations for cutting force prediction. The more notable in this 

regard is the work being done by Armarego and et al at University of Melbourne to 

systematically extend the theory to other operations. In this continuing effort, Armarego et al 

try to predict cutting forces in different operations from a common machining database derived 

from single edge orthogonal cutting and containing information on the shear angle, chip-tool 

friction, shear flow stress on the shear plane and the chip flow angle[e.g. Armarego, 19??, 

19??, 19??]. 

 In recent years there has been much activity with regard to the development of 

computational models.Amongst the computational approaches, finite element modeling  

(FEM) has been particularly popular.  However, a major problem with all computational 

approaches has been that they require a priori knowledge of the stress-strain-strain rate-

temperature relationship of the work material. Such information is very difficult to obtain since 

it is difficult to simulate the extreme strains and strain rates prevailing during cutting in actual 

material tests in practice. Another problem is that these models require a quantitative criterion 

for chip separation and a knowledge of the progression of chip-tool friction  as one progresses 

from transient to steady state cutting. As a result, as recently observed in a CIRP report 

[Childs], computational models are still unable to quantitatively predict cutting force 

magnitudes - the error is often of the order of 100%. 

 A further complication in predicting cutting force is the presence of the built-up edge under 

a range of cutting conditions. While this phenomenon has been extensively studied 

experimentally, there are no analytical models either to predict the existence of built-up-edge 

or take into account its influence on the cutting forces. 

 Although modelling has provided us with a deep understanding of the machining process, 

currently available models suffer from many limitations. For instance, many of the 

performance outputs can not still be predicted and the model performance against the two 

basics criteria, “generality” and “accuracy” , is still far from being satisfactory. One major 
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drawback is the requirement for massive machining databases, MDB, which consists of the 

appropriate magnitudes of the various variables and parameters used in the model for the 

specific machining process (see Figure 1.3). The database provides the machining coefficient 

for the machining process. However, the process of determination of these parametrs, 

variables or coefficients itself requires extensive and expensive off-line experimentation, Xoff. 

Owing to this requirement of massive experiments, the manufacturing cost will be greater. 

This is not an efficienct approach.   

 

 [Mp]{In} {Op}

Xoff: Off-line Experiments

{C} = Model Coefficients

MDB

Machining

Database

 

 Figure 1.3 Prediction based on modelling supported by machining database 

  

 As noted recently in [Venuvinod, 1996 ], a problem with all the analytical approaches 

summarised above is that these machining databases, of necessity have to be static. In 

particular they cannot anticipate the myriad real time factors that influence cutting force 

magnitudes. These disturbing or unknown factors include the presence and size of  built-up- 

edge, unanticipated variations in work material properties (grain size, phase dispersion, hard 

scales, etc.   all of which influence cutting forces, minute variations in the sharpness of the 

cutting edge, the presence of lubricating films on the tool faces, and so on. Thus, while these 

models appear to have been validated against limited experimental data, they are unlikely to 

be robust enough to be applicable in the highly variable CNC machining environment. 

  

  

 

 

1.4  Force prediction through learning 

  Force prediction using modelling approach has been discussed in the previous sections. 

However, modelling always involves a sets of equations which is only applicable in limited 

cutting conditions. It becomes less capable to the modern rapid growing industries. A new 

approach, “learning”, is introduced which simulate the capability of a human brain. The 

learning approach is believed availible with “no limitation”.  The general archeture of a learning 

system as shown in Figure 1.4 is proposed by Veninoud.  

 

 

 

 

Learning Network 

{In} {Op} 
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Figure 1.4 A view of Learning Network 

 The steps of learning is as simple. The inputs array which can cause the desired output 

array is feed into the learning network, an array which known as Weighting is kept changing 

until the generated output is similar to the desired output. The greater similarity of the 

generated output to the desired output, the greater accuracy with the learning network. Unlike 

the modeling approach, LN, or ANN, is an implicit model which the contains inside the network 

and the processing method are all unknown to user.  

 ANN can be classified as supervised or unsupervised. The former one will have desired 

output while the later haven‟t. These two networks will be used for different purpose. However, 

both of them operates similarly. There are two learning stages for different kinds of ANN, 

training and testing. The training stages requires input to the network and desire output 

together alter the weighting in the network. Weight is the spilit of the network. The training 

cycle is repeated until testing stages give out satificaty accuracy.  

 

1.5 Augmenting  learning with sensing 

 The basic ability of a learning network can be improved by adding a sensory input as the 

nominal input array based on the idea of Veninoud[       ]. The general drawback of traditional 

approach of modelling is from the large size MDB. To generate a rather reliable MDB, a large 

sum of expensive off-line experiments is required. This will greatly increase the manufacturing 

cost. At the same time, the modelling method with MDB can not due with inherent variable 

input. Such input may always happen in the realistic shop floor operation.  

As shown in Figure 1.2, there always exist an output together with {Op}, say {Os}. These output 

is the result of model Mp and must contains much information compared with the various 

input. The main critical point is how to fully utilise the hidden information of the sensory output. 

To use a sensing output as one row of the input array is one of the answer and this new 

approach has brought success to Venioud‟s experiment about compensation for workpiece 

dimensional errors in turning.  

 

 

1.6 The end milling operation 

1.6.1 A typical feature of the milling process is  that the rotating tool (the milliig cutter) has 

a number of cutting edges each of which works over only part of its rotary path and travels 

over the remainder without cutting. The machine tool designer must always bear in mind the 

implications of these conditions, which concern the pulsations of the cutting forces; the 

vibrations of tool, workpiece and machine; the quality of the surface produced;, etc. The axis 

of rotation of the milling cutter remains usually stationary and the feed movement is carried out 

by the work-piece.  

 When the cutting edges are arranged on the circumference of the milling cutter, the 

process is called Peripheral Milling, whereas when they are arragned on the cutter face, the 

process is called Face Milling.    
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 As each tooth or insert of a milling cutter enters the workpiece, it is subjected to a 

mechanical shock load. The magnitude of this load depends upon the workpiece material, 

cutter position, operating conditions, and cutter geometry. Cutting forces in milling are cyclical, 

being roughly proportional at any position. Heat generated in the milling operation is also 

roughly proportional to the undeformed chip thicknes and cutting forces. Rapid changes in 

generated heat place a severe strain upon the cutter material and can lead to thermal 

cracking.  

 

1.6.2 Up and Down Milling 

 If the rotation of the milling cutter cutter is such that the tangential cutting force is 

generally opposed to the direction of workpiece feed and the axis of the cutter does not 

intersect the workpiece, the undeformend chip thickness constantly increases during the cut. 

This is called up milling or sometimes conventional milling. If the rotation of the cutter is such 

that the tangential cutting force is generally in the same direction as the workpiece feed and 

the cutter axis does not intersect the workpiece, the undeformed chip thickness constantly 

decreases during the cut. This is called down milling , also known as climb milling. Up and 

down milling exist in their pure forms only when the cutter spindle center-line does not 

intersect the workpiece. In such cases, each tooth executes up milling action in one part of the 

cut and down milling in rest of the cut.erations, either up milling or down milling may be 

selected by proper selection of the direction of the machine table feed, cutter position, and 

direction of cutter rotation. However, this condition is not satisfied in all slotting and side milling 

operations, and some face milling and end milling situations. 

 One of the significant differences between up and down milling lies in the direction of the 

cutting forces generated. In up milling, the tangential force opposes the thrust force which is 

the force attempting to push an individual tooth or insert out of the cut. As a result, the feed 

force must be high for the cut to be made.   

 

1.6.3 Chip Formation in Milling 

 The basic process of chip formation in milling is the same as for all other metal cutting 

operations  a wedge- shaped cutting tool engages the workpiece to remove a layer of 

material in the form of a chip. Chip formation in milling differs from single-point metal cutting in 

several aspects. Practically every millng operation consists of an interrupted cut, with each 

tooth or insert generally in the cut less than half the total machining time per cutter revolution. 

While the tooth or insert is in the cut, the thickness of the chip being formed constantly 

changes because of the dual motion  cutter rotation and work-piece feed which is 

characteristic of the milling process. 

 

1.6.4 Versatility of End Milling Cutters 

 End mills are the most common and widely used type of milling cutter. These versatile 

tools are also available in more standard styles, shapes, and sizes than any other milling 
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cutter. Major applications include facing, slotting, profiling, plunge cutting and diesinking and 

cavity cutting. Because their versatility, they are the most extensively used milling cutters on 

CNC machining centres. 

 

1.6.5 End Milling Operation Inputs 

 The normal input array, {In}, to an end milling operations are (see Fig. ?): 

 cutting speed / RPM 

 axial depth of cut / aa 

 radial depth of cut / ar 

 feed rate / f  

 

1.6.6 End Milling Operation Outputs  Performance Measures, {Ip} 

 A partial list of (Ip} for end milling is: power consumption, Longitudinal feed force (Fl), 

transverse feed force (Ft), thrust force (Fn), mean torque experienced by the cutter, mean 

cutting temperature, mean flank wear and/or wear rate, tool edge chipping, tool fracture, 

roughness of the machined surface, chatter. The present project is mainly concerned with 

predicting the three force components Fx, Fy, and Fz.  

 

1.7 Objectives of the present work 

 It is useful now to define the basic objectives of the current project. The following 

observations derived from a review of the literature have led to the specific objectives listed in 

the next paragraph: 

 End milling is one of the most extensively used machining operations generally in 

modern machine shops and particularly on CNC machining centres. 

 Cutting force magnitudes have enormous influence on the performance measures, 

{Op}, of end milling such as tool wear, tool edge chipping, tool breakage, work-piece 

dimensional accuracy. Hence it is of significant economic importance to be able to 

predict cutting forces under varying cutting conditions prevailing on the shop floor.  

 The traditional approach of relying on analytical and computational models has 

generally failed to provide satisfactory prediction of cutting forces. 

 Much research effort world-wide has been directed in recent years into developing 

intelligent manufacturing systems who can monitor themselves, anticipate problems 

that would be encountered on the next workpiece, and take necessary precautions. 

Developments in  Artificial Intelligence (AI) have been particularly useful in this 

context. Amongst AI techniques, learning based on Artificial Neural Nets (ANN) has 

been found to be particularly useful. 

 Development of new sensing and sensor fusion techniques have also contributed to 

progress towards developing intelligent manufacturing systems. Amongst the 

sensors, acoustic emission sensing has been found to be particularly suitable for 

monitoring machining operations.  There is evidence that the true mean square 
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value of AE has a significant positive correlation with the energy expended in the 

deformation and friction zones in machining. 

 It appears that the learning effectiveness of ANN can be improved by augmenting 

the net with real-time sensory information. 

 Notwithstanding the significant effort put into applying ANN and AE to end milling, 

little work has so far been done towards applying ANN and AE for predicting cutting 

forces in end milling.   

 

 The following are the objectives of the work described in this dissertation: 

 Measure cutting force in end milling under a variety of cutting conditions 

 Investigate the effectiveness of BPN in learning to predict end milling forces 

 Implement a system for measuring AE from end milling 

 Investigate the effectiveness of augmenting the BPN with the TMS values of AE 
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Chapter 2 

Literature Review 

 

 

2.1  Cutting force models for end milling 

   The need to quickly predict tool failure in milling process is the need to modern industries. 

To monitor the cutting force during milling process is one of the approach to achieve the goal. 

Many survey and research has been done on the mentioned area, also with milling[Adolfsson, 

1996] [Alauddin, 1996] [Altintas,  1992] [Tama, 1996] [Altintas,  1989][Ryabov, 1996] [Altintas,  

1988] [Ber,  1988][Tam, 1987][Devor, 1980], Computer based modelling is now becoming 

widely used[Armarego,  1993][Armarego, 1991] [Altintas,  1991] [Deshpande, 1990] 

[Armarego, 1985][Whitfield, 1976]. In this paper, emphasis is paid on the multi-point cutting 

process- end milling process. The process is far more complicated compare to the single 

point cutting process. The end milling process is a helical one which consists with three 

components: tangential force, axial force and radial force[Armarego,  1970]. The forces are 

generated during the entrance and exit of the tool into the workpiece. There has already 

developed many models to predict, control and monitor milling force[Rober, 1996][Bayoumi,  

1994][Tai, 1995]. However, no exact one is the most powerful. 

 

2.2 Sensor for machining  

Sensing has been clearly defined as the measurement and monitoring of the generating 

output of machining, tool condition monitoring, force prediction, etc [Takatsuto, 1994][Lee, 

1988][Bischoff,  1987][Suzuki, 1985][Moriwaki, 1984] [Suzuki, 1983][Micheletti, 1976][Zakaria, 

1973]. The signal collected will then be analysis with a signal processing algorithm. A system 

known as “smart sensor” system is proposed[Santochi, 1996][Kuo, 1994][Guinea ,1991]. The 

proposed system has been described in the previous chapter in detail. The general purpose of 

introducing sensory control in the field of machining is to give immediate response when there 

is any detectable alarm[Li, 1993] [Jiri Tlusty, 1988]. Also, the sensor must be smart enough to 

distinguish between unwanted noise and failure event. It becomes the great aspect in 

searching for the best threshold level under varying cutting condition.  

The sensor itself also must have a portable capability. It means that the sensor can be 

installed in a wide range of machining operation. Also it must have the reliability and 

maintainability. The reliability of a sensor comes with the control system which set the 

threshold level to the sensor and the ability in separating the noise. The maintainability of  the 

device can greatly reduce the installing and maintaining cost. In the modern industry, the 

sensors are always comes with a shielding in order to reduce the effect of interpreting noise. 

Also, they always have a housing accompanied so as to minimise the accidental breakage. 
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Therefore, sensor system is widely used for the advantage of providing fast response with is 

critical in modern manufacturing.  

 

2.3 Acoustic emission sensing for machining operations 

Research of Acoustic Emission has been started by Dornfeld and Kannatey-Asibu 

regarding to orthogonal cutting[Blum,  1990][Heiple,1994]. And later on the study is extended 

to the topic of obilque cutting. There are many documents talking about the influence of three 

cutting parameters, cutting speed, depth of cut and width of cut on AE RMS. There is only one 

model stating the general relationship of these three cutting parameters to tool failure, tool 

wear, etc. The literature claimed that the AE RMS should increase as the cutting parameters 

increase for the reason of their indirect effect on shear angle. 

In process monitoring for tool conditioning, material behavior, cutting force generation, 

detection of thermal condition have become the wide interest of the modern industries. Many 

researches have been carried out to find out the best approach to satisfies the interest [Yen, 

1986][Blum,  1988][Lan, 1985][Tse, 1985][Kannateyasibu, 1981][Kannateyasibu, 1980]          . 

However, no certain approach is believe to be the absolute answer to the interest. Over the 

last decade, Acoustic Emission has been analyzed in detail under different machining 

conditions. Now there is no doubt in using Acoustic Emission as it brings lots of information 

content that is not easily to be found out and noticed by any other means of sensing[       ]. 

Acoustic Emission, in short, is the transient wave released from the plastic deformation zone 

during metal removing process.  It shows changes when there is tool wear, too breakage, built 

up edge, etc. Several technique of analyzing AE have been developed. Two examples of the 

technique are time domain analysis and frequency domain analysis by Fast Fourier Transform 

function. And these two techniques are widely used in many researches. The AE generated 

always in the order of 0.1 to 1 MHz range[    ]. It requires a sensor with high frequency 

response. Basic Acoustic Emission will be discussed in Chapter 3 detailly with the sensor 

employed. 

 

2.4  Acoustic emission sensing for end milling operations 

In this section, a detail discussion of one paper will be proposed. The most important 

paper which gives me the motivation of the this project is by Man Liu and Steven Y. Liang. The 

title of the paper is Monitoring of Peripheral Milling Using Acoustic Emission. The document 

stressed that there is no document clearly analysis the relationship of feedrate, depth of cut, 

and acoustic emission.  

In order to make comparison between the two experiment data, it is recommended to use 

the same apparatus, operating under the same working condition. However it is not possible 

for different shop floor layout. Maximum similarity is required. In Man Liu‟s paper, he used AE 

TMS as the characteristic parameter of AE signal. The primary definition of TMS will be clearly 

stated in the later chapter. In his preliminary experiment, the vertical distance between AE 

sensor and the cutting zone has found great influence on the AE TMS. The greater the 
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distance, the weaker the AE TMS. However, he doesn‟t explained the principle behind in 

detail. And, the observation will be confirmed by later experiment with explaination as soon as 

possible.  

Also, he has used the resultant force at all without any statement. However, the reason of 

using resultant can be explained in later chapter after my experiment. He has made 

modifaction of the sampled data by introducing a transfer function which will make the 

sampled data more smoother for measurement.  

He has made some assumption on the experiment, that‟s all the AE energy are coming 

from the tool/workpiece interfaces, the deformation energy from the cutting zone, the rubbing 

energy from tool/workpiece interfaces. And he assumes no AE energy is related the chip 

breaking and formation. And based on this assumption, he generates a set of equations.  

It should now first define zone AB and CD. The following figures will illustrate the location of 

the zone 

 

 

 

 

 

 

 

 

Figure 2.2 cutting zone AB 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Rubbing zone CD 

 

 

It is clearly noticed from the figures that AB is the perperheral cutting zone while CD is 

the rubbing zone. Now, I would like to discuss these equations in detail. The first equation he 

used is  

 TMS C E EAB

AE
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AE 1 ( )  
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cutter 

workpiece C D 
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where    ECD
AE

 is the energy from rubbing zone CD 

E AB
AE

is the energy from cutting zone AB 

 C1 is a proportional constant     

 

Based on this equation and the observation after his testing, he generates two 

equation which are simple linear equation in the format of  y=mx + c showing the general 

relationship between axial depth of cut - AE TMS and radial depth of cut - AE TMS.  

According to the energy conservation equation, there will be machanical energy which 

converts into other from of energy in cutting, so there is only a portion of energy which will 

finally detected by AE sensor. However, the main problem is that he first assume the “ total 

energy” but not concern the energy from different zones individually. For more generality, I 

would like to setup another energy equation. 

  

TMS C E C EAB

AE

CD

AE ( )2 3 ------------------ 

where C2 and C3 are proportional coefficient of zone AB and CD 

 

 For graphs from Mr. Liu, not all the cutting x  - axis value are the same. For example, the 

radial depth of cut from the three different cutting parameters doesn‟t have the same x - axis 

value, it seens that only linear portion are shown. There is no explaination of these distortion.  

 Mr. Liu has developed two equations based on his experimental data regarding to the 

radial and axial depth of cut. Both of them are liner polynomial equation with two leading 

coefficient.  However, he doesn‟t provide a good representation of the coefficient. In another 

work, it is to do lots of off-line experimental to draw a MDB which is only for the coefficient. 

Furthermore, he only has experiments on two kinds of material and working under several 

cutting conditions. It is not enough to draw conclusion for the AE generation with the effect of 

different cutting parameters.   

 

 

2.5 Learning using ANN in machining 

With the idea of  “smart sensor”, an Artificial Neural Network computer based software is 

widely used in many on-line monitoring and tool failure detecting projects[Javed, 1996][Lung, 

1995][Zilouchian, 1995][Kamarthi, 1994][leopold, 1994][Kurapati, 1992]. The main purpose is 

the “rapid replacement of flexible human workers who have high quality sensory interpretative 

abilities”[                                  ]. The system then have the ability to make decision itself, just 

like what a human worker does. The technique used is pattern recognition technique, which is 

the common way of thinking of a human.  There are two kinds of ANN, supervised and 

unsupervised. The general classification of the ANN is based on the training procedures. 

Supervised network operates with an array of desired output, while unsupervised learning 
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network works without desired output. However, all the other procedures are similar. The main 

architecture of the ANN is described in Chapter 4.  
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Chapter 3 

Acoustic Emission (AE): Theoretical Background 

 

 (Note:  There are many excellent books on AE. The following discussion is largely 

compiled from information available in [?].) 

 

3 .1 Development of  AE 

 During the past 40 years, extensive developments in non destructive testing (NDT) have 

taken place- The traditional methods based on ultrasonics, readiography, eddy currents and 

penetrants have especially benefited from advances in instrumentation. Techniques based on 

different physical phenomena such as exoelectron emission, holography, thermography, and 

nuclear magnetic resonance have shown promise of eventual evoluton as practical NDT 

methods. Acoustic emission (AE) which deals with the very high fequency (i.e. way beyond the 

capacity of the human ear) noises made when materials deform or fracture is a technique 

based on entirely  new concepts which has progressed to a practical NDT.  

 AE can be used in the laboratory as a research tool or to assure safety. Studies of 

Barkhausen noise, the martensitic transformation, corrosion, etc fall in the former category. 

Use in the petrochemical or allied industries, for weld monitoring, for testing reinforced plastic 

installations or machined parts are examples of the latter classification. AE can be used with 

many different materiils and in many different ways.  

 

 

3.2 The nature of AE 

 Most materials emit AE during deformation. In any  situation involving the redistribution of 

energy at least some energy will be available as AE   and corrosion, transformation is 

included along with deformation and fracture. If there is no materail change, there will be no 

redistribution of energy and there will be no AE. AE activity only appears as the result of 

physical activity or change. Furthermore AE occurs at the same time as the physical activity 

occurs. Using modern scientific instrumentation a detectable amount of energy is produced as 

the result of most activities.  

 

 

3.3 Theory of AE 

 3.3.1 Sources of AE 

 Source identification is necessary so that the behavior of the materail can be predicted 

and in order that a meaningful approach can be made to modelling sources. As well , 

information about unwanted (extraneous) sources is also needed, to assist in the positive 

identification of damage related AE in real situations.  

  

3.3.2 True Mean Square (TMS) Values 
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 Root mean square (RMS) measurements are often made with an instrument called a true 

RMS meter. However, most of the indicators display to some extent frequency and wave 

shape. Commmercial equipment often provide an RMS capability and the makers have gone 

to a great deal of trouble to ensure that frequency effects are minimized. The value of RMS 

measurements lies in their ability to differentiate between large and small signals. Thus it is 

common to use ring down and RMS measurements in conjunction. For those unable to afford 

an RMS meter a high speed rectifier gives similar answers.  

 The energy associated with an AE event is dependent variously on the source sensor 

distance, frquency effects, differing attenuation of different wave types and it is hard to build 

suitable instrumentation. Furthermore it is difficult to see how a sensible answer can be 

obtained from a heavily conditioned signal. Nonetheless it is considered by some workers to 

be the most important of the single figure indicators.  

 The first attempts at energy measurement were by Beattie and Jaramillo [?], who put 

together a device suitable for laboratory use. Shortly after Beattie compared various 

techniques for energy analysis  showing how RMS and energy values are related and 

stressing the need for broad-band measurements, Duncan showed that the area under the 

envelope of the signal was related to the energy of the signal and that it was true even for a 

band-pass limited situation [?]. However his idea of band-pass limitation was sufficient to 

cover in excess of the normally used AE range, say, from 10 kHz to 2.2 MHz. He compared 

his results with a RMS voltmeter and decided that energy could be obtained from squaring the 

RMS signal.The squared value is termed as True Mean Square (TMS). 

 

 

3.4 AE Sensors 

 The sensors (transducers) first used in AE research were PZT (lead zirconium titanate) 

accelerometers chosen to have the highest sensitivity consistent with a high frequency 

response. In the interests of simplicity and greater sensitivity the backing mass was soon 

discarded, leading to a design which was to remain essentially the same to the present time.  

 The ideal transducer should be small, highly sensitive to a specified parameter, easy to 

couple to the workpiece, cheap and easy to construct. In addition, it should exhibit its high 

sensitivity over a wide frequency range whilst maintaining a linear response, and it should 

have a simple dependence on a single parameter such as displacement normal to a surface. 

Such sensors are not presently available and the imperfections of existing devices should be 

noted and understood.  

 Sensors based on the use of PZT material are cheap to produce and robust in use but 

their characteristics are far from ideal. The few types of presently available transducers having 

better characteristics are really only suitable for laboratory usage.  

 The sensing element usually comprises a single disc of PZT poled in the thickness 

direction which when unclamped will possesses a well-defined natural frequency largely 

dependent on thickness. The flat surfaces are covered with a conducting material. e.g. silver 
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for the reason of electrical connection. To ensure ease of handling, the element is enclosed in 

a conducting, metallic, non-magnetic cylindrical case and generally a plug is attached. One 

surface of the silvered disc is glued to the inside bottom of the case and a lead is attached, 

using conductive cement, to the other surface of the disc. With available pressure sensitive 

adhesives, sufficient ohmic contact is readily made between disc surface and plate; in any 

case separation distances are small and capacitative compling is likely to be adequate in 

many situations. Invariably the cable between transducer and preamplifier is kept short. It is of 

shielded coaxial material with the shielding connected to an earth point   often quite simply 

via the connector to the equipment earth point. This gives a certain amount of protection 

against EMI (electro-magnetic interference). Added protection is obtained from an insulation 

wear plate, attached to the bottom of the case, which helps to prevent the formation of earth 

loops.  

 Problems with low signal/noise ratios can be addressed by filtering and by using resonant 

sensors. A PZT sensor is naturally resonant but the various modes of vibration of the disc are 

extensively cross-coupled; thus the sensor does not have a simple response curve but one 

which comprises a dominant peaks.  

 Some transducers have been made from laminar material of an irregular shape in an 

attempt to improve frequency response. An interesting practical technique known as inductive 

tuning involves connecting a small inductance across the terminals of the transducer as close 

as possible to the sensing element. Resonant peaks can be enhanced and shifted by varying 

the value of the inductance. Naturally the technique is sensitive to lead capacitance and is 

best suited to permanent transducer installations.  

Adding protection against EMI is sometimes obtained by using a high common mode rejection 

capability of the differential amplifier 

 Sensors can be selected base on the following criteria. 

 Availability:  Sensor costs are not negligible and a complete range of sensors is not 

normally available for immediate use. Hence, it should take the availability into account. 

 Sensitivity: Estimates can always be made of the expected AE activity but in general the 

most sensitive sensor will be chosen which has the best frequency response, the smallest 

size. Also the sensitivity should be kept constant over the chosen frequency band.  

 Frequency response: Waves propagating in structures which approximate to plates or 

shells can often be characterised in terms of mode and frequency; a sensor can be 

chosen to work or avoid a particular frequency. It is possible to choose a sensor having 

maximum sensitivity to AE and minimum sensitivity to background noise. 

 Size: It is possible to minimise the timing error in location measurement by shortening the 

distance between the active contact area of the sensor and work-piece.  

 

3.5 Calibration of AE Sensors 

3.5.1  Calibration is defined as the correlation of readings of an instrument with a standard. 

This was especially troublesome until suitable simulated sources of AE were developed. 
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Calibration of a sensor is carried out by the operator. Nelson Hsu [Hsu, 19?] invented the lead 

pencil break as a suitable simulated source of AE. A simple jig has been developed which 

ensures that a constant angle and length of lead is maintained. A lead pencil is often used and 

the most suitable lead appears to be 0.5mm diameter 2H material. It is possible to measure 

the initial load applied to the lead and this is often done in laboratory situations. Triggering of 

apparatus by the fracture is also possible by making resistance measurements.  

 

3.5.2 Calibration procedures 

 Calibration means the measurement of output given a known input. Calibration 

procedures may vary depend on the chosen calibration method. Providing a suitable known 

AE input presents problems because information is still lacking about the nature and size of 

the AE event at its source and about its distortion as it propagates through a structure. As will 

the importance of specimen dependence is not always will understood. In the past, reciprocity 

techniques for calibration of transducers have always been highly attractive on paper but 

difficult to apply.  

At least two needs can be identified. First need is to specify the performance of a transducer 

and second is to relate signal output of an installed sensor to the AE event at its source. There 

is also the need to choose calibration parameters. Clearly the effects of propagation and 

coupling can be eliminated.  

 

3.6 Some uses of AE 

 AE has been used to detect collapse of bubbles in the blood stream, to measure 

hydrogen content by evaluating embattlement, to quantifies atmospheric smog by monitoring 

crack growth changes in given material, to measure previously attained maximum pressures 

by utilising the Kaiser effect and equipment is available for the detection debris left behind 

during the manufacture of jet engines. Vibro-acoustic emission is a recent Rolls-Royce 

development which is fully described by its title   signals are produced when components 

are vibrated. AE has been used to study chip formation during the machining of metals and 

appears to have possibilities for use in process control. A model has been developed which 

allows the mode of chip formation, the chip-tool contact length, the tool-flank wear to be 

identified or measured.  

 Although forces, power consumption, temperature are readily measured in the laboratory 

it seems difficult to make these measurements in an industrial situation. AE count rate and 

RMS measurements have been used to identify changes in plastic deformation in the shear 

zone at the tip of the cutting tool which is understood to be the principal source of AE. AE has 

been found to increase with feed and cutting speed and is sensitive to the depth of cut . It was 

observed that AE activity changed dramatically as the tool wore which is in contrast to metals. 

It is because the chip changed in shape from short discontinuous to long continuous. AE has 

been used to characterise hardboard but the attenuation is very high and signals can only be 

detected close to the sensor. The distance should be within about 6cm .   
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Chapter 4  

Backpropagation (BPN) Networks: Theoretical Background 

(Note: The contents of this chapter have been significantly influenced by [?, ?, and. ?]) 

 

4.1 Introduction to artificial neural nets (ANN) 

 A human brain continually receives input signals from many sources and processes them 

to create the appropriate output response. Our brains have billions of neurons that 

interconnect to create elaborate "Neural networks". These networks execute the millions of 

necessary functions needed to sustain normal life. For some years now, researchers have 

been developing models, both in hardware and in software, that mimic a brain's cerebral 

activity in an effort to produce an ultimate form of artificial intelligence. Many theoretical 

models (or paradigms), dating as far back as the 1950's, have been developed. Most have 

had limited real-world application potential, and thus, neural networks have remained in 

relative obscurity for decades. The backpropagation paradigm, however, is largely responsible 

for changing this trend. It is an extremely effective learning tool that can be applied to a wide 

variety of problems. Backpropagation related paradigms require supervised training. This 

means they must be taught using a set of training data where known solutions are supplied. 

 

4.2 The basic structure of backpropagation nets (BPN) 

4.2.1 Backpropagation type neural networks process information in interconnecting 

processing elements (often termed neurons, units or nodes  we will use "nodes"). These 

nodes are organized into groups termed layers. There are three distinct types of layers in a 

backpropagation neural network: the input layer, the hidden layer(s) and the output layer. A 

network consists of one input layer, one or more hidden layers and one output layer. 

Connections exist between the nodes of adjacent layers to relay the output signals from one 

layer to the next. Fully connected networks occur when all nodes in each layer receive 

connections from all nodes in each preceding layer. Information enters a network through the 

nodes of the input layer. The input layer nodes are unique in that their sole purpose is to 

distribute the input information to the next processing layer (i.e., the first hidden layer). The 

hidden and output layer nodes process all incoming signals by applying factors to them 

(termed weights). Each layer also has an additional element called a bias node. Bias nodes 

simply output a bias signal to the nodes of the current layer. All inputs to a node are weighted, 

combined and then processed through a transfer function that controls the strength of the 

signal relayed through the node's output connections.  A nodes operation is shown below. The 

transfer function serves to normalise a node's output signal strength between 0 and 1.  
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Figure 4.1 The back propagation network [?] 

 

4.2.1 Input and output layers 

 The input layer of a neural network has the sole purpose of distributing input data values 

to the first hidden layer. The number of nodes in the input layer will be equal to the number of 

input data values in the model.  

 

4.2.2 Hidden processing layers 

 Choosing the number of hidden layers and the number of hidden nodes in each layer is 

not so trivial. The construction of the hidden processing structure of the network is arbitrary. 

While there is normally a large envelope of hidden layer constructions that yield like results, 

the importance of selecting an adequate hidden structure should not be underestimated. Many 

factors play a part in determining what the optimal configuration should be. These factors 

include the quantity of training patterns, the number of input and output nodes and the 

relationships between the input and output data.. It may often be tempting to construct a 

network with many hidden layers and processing units--falling into "the bigger the brain the 

better the model" trap. This philosophy can easily result in a poorly performing model. When a 

network's hidden processing structure is too large and complex for the model being 

developed, the network may tend to memorise input and output sets rather than learn 

relationships between them. Such a network may train well but test poorly when presented 



 30 

with inputs outside the training set. In addition, network training time will significantly increase 

when a network is unnecessarily large and complex.. Generally, it is best to start with simple 

network designs that use relatively few hidden layers and processing nodes. If the degree of 

learning is not sufficient, or certain trends and relationships cannot be grasped, the network 

complexity can be increased in an attempt to improve learning. A plausible starting point for 

the loan application model would be to use 2 hidden layers with 3 to 4 nodes per layer. If this 

design does not train sufficiently, the size and complexity of the hidden structure can be 

increased.  

 

 

 

Figure 4.2 Input-output view of BPN node 

 

 

 

 

 It has been demonstrated theoretically that for a given network design with multiple 

hidden layers, there will always exist a design with a single hidden layer that will learn at an 

equivalent level. However, in practice, it is usually better to employ multiple hidden layers for 

solving complex problems. To adequately model a complex problem, a single hidden layer 

design may require a substantial increase in the number of hidden nodes compared to a 3, 4 
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or 5 hidden layer construction. In simple terms, a single hidden layer design with 10 nodes 

may not learn and perform as well as a network with two hidden layers containing 5 nodes 

each. Multi-hidden layer networks tend to grasp complex concepts more easily than networks 

with one layer. One reason for this is that the multi-hidden layer construction creates an 

increased cross-factoring of information and relationships. Thus, a network's learning ability is 

controlled by both the total number of hidden layers and the total number of hidden nodes. 

 

4.2.3 Network connections 

 Another network design consideration concerns how to control the network's 

connections. Input information can be channelled and processed in a localised area of the 

network. "Pass-through" nodes can be constructed that receive only one input connection 

from the preceding layer and pass that information down to the next layer. This has the effect 

of creating connections that skip a layer. While the connection editor gives the modular almost 

unlimited flexibility in designing a network, the fact is that the vast majority of designs work 

best fully connected.  

 

4.2.4 Transfer functions 

 A node's transfer functions serves the purpose of controlling the output signal strength for 

the node (except for the input layer which uses the inputs themselves). These functions set 

the output signal strength between 0.0 and 1.0. The input to the transfer function is the dot 

product of all the node's input signals and the node's weight vector.  

 This sigmoid function is the most widely used function for backpropagation neural 

networks.  The sigmoid function is represented by the mathematical relationship.1/(1+e-x). 

The sigmoid function acts as an output gate that can be opened (1) or closed (0). Since the 

function is continuous, it also possible for the gate to be partially opened (i.e. somewhere 

between 0 and 1). Models incorporating sigmoid transfer functions often help generalised 

learning characteristics and yield models with improved accuracy. Use of sigmoid transfer 

functions can also lead to longer training times.  

 The Gaussian transfer function significantly alters the learning dynamics of a neural 

network model. Where the sigmoid function acts as a gate (opened, closed or somewhere in-

between) for a node's output response, the Gaussian function acts like a probabilistic output 

controller. Like the sigmoid function, the output response is normalised between 0 and 1, but 

the Gaussian transfer function is more likely to produce the "in-between state" It would be far 

less likely, for example, for the node's output gate to be fully opened (i.e. an output of 1). 

Given a set of inputs to a node, the output will normally be some type of partial response. That 

is the output gate will open partially. Gaussian based networks tend to learn quicker than 

sigmoid counterparts, but can be prone to memorisation.  

 The hyperbolic function counterparts to the sigmoid and gaussian functions are the 

hyperbolic tangent and hyperbolic secant functions. The hyperbolic tangent is similar to the 

sigmoid but can exhibit different learning dynamics during training. It can accelerate learning 
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for some models and also have an impact on predictive accuracy. Experimenting with transfer 

functions for each individual model is the only conclusive method to determine if any of the 

non-sigmoid transfer functions will offer both good learning and accuracy characteristics. 

 For most modeling tasks, the sigmoid function should at least be a baseline model to 

measure results. A general rule of thumb is that the sigmoid will produce the most accurate 

model; but be slower learning. If you intend to frequently train similar models and training 

speed is critical, different combinations of transfer functions, including hybrid networks, are 

worth investigating to find faster training models that exhibit acceptable accuracy. 

 

4.3 Programming versus training 

 Traditional programming techniques requires that someone create an algorithm. While 

for some problems designing the sequence of instructions is stragihtforward, for many real-

world problems it is very difficult to create an algorithm. Imagine trying to write a program that 

could recognise a person's face. There are many variations that would have to be taken into 

account. For instance, is the person smiling or frowning? 

 Neural networks, in contrast to being programmed, are trained. This means that 

examples are presented to the network, and the network adjusts itself by some learning rule 

(based on how correct the response is to the desired response). Therefore, you feed plenty of 

representative examples to a neural network.  

 

4.4 Neural networks versus expert systems 

Neural networks, expert systems and fuzzy logic collectively make up the field of artificial 

intelligence. However, they differ significantly from each other, as well as from traditional 

programming. Expert system differ from traditional programming in that the knowledge base is 

separated from the means of processing the knowledge( the inference engine). This allows 

additional knowledge to be added to the system without reprogramming.  

This technique requires that an expert knowledgeable in the relevant area be available, so that 

rules can be created to encode knowledge. An example of a rule might be "if there is a large 

amount of facial hair around the mouth, ten the person is a male." Confidence factors are 

often added to rules, such as "if there are earnings hanging from the ear, the terson is a 

female- confidence 85%." 

 When developing neural network solutions to a problem, neither the knowledge nor the 

explicit rules for processing the knowledge are coded by the programmer. Instead, the neural 

network learns the rules for processing the knowledge. This is done by adjusting the weight 

values in a highly connected network based on the example data. You can think of a neural 

network as a very general model that is parameized by the adjustable weights. Therefore, you 

don't need access to an expert in the relevant knowledge domain to develop a neural network 

(although such an expert may be essential in selecting and preparing the data that is 

presented to the network).  
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 An interesting point is that expert systems can tell you how they arrived at a particular 

answer, but neural networks can't always do that. For the same reason that the complexity of 

the problem prevents experts form telling you exactly how they arrived at an answer, this 

information may not be easily available from a neural network.  

 

4.5 Neural networks versus statistics 

 A knowledge of  statistics is excellent preparation for appreciating the power and flexibility 

of neural networks. In statistic, one must often make many assumptions about the data, and 

must sometimes limit the analysis to a certain number of possible interactions. By contrast 

from a practical point of view, neural networks are basically "non-parametric," although in 

theory one  can think of a neural network as being parametized by its weights. In addition, 

more terms can be examined for interaction by a neural network, since the network will, we 

expect, place its emphasis on those inputs that help to predict the output. By allowing more 

data to be analysed at the same time, more complex and subtle input interactions are 

possible. It should be stressed that statistics can be helpful in understanding the data, which 

can lead to developing a better neural network model.  

 

 

 

 

 

 

 

 

 

 

 



 34 

Chapter 5 

Experiments and Observations 

 

 

 

 5.1 The equipment used 

5.1.1 The milling machine 

 The milling machine used in this experiment is a vertical milling machine which is 

commonly installed in the shop floor. The bed can also by fed in the x, y, and z axes manually 

or automatically by setting the feed rate. Most milling machines are equipped with power feed 

for one or more axes. Power feed is smoother than manual feed and, therefore, can produce 

a better surface finish. Power feed also reduces operator fatigue on long cuts. On some 

machines, the power feed is controlled by a forward reverse lever and a speed control knob.  

  

 

 

 

 

 

 

5.1.2 The dynamometer 

The three component dynamometers Types 9265 is piezoelectric transducers for 

measuring the three orthogonal components of a force. The dynamometers have high rigidity 

and therefore high natural frequency. The high resolution enables small dynamic changes of 

large forces to be measured. For each of the three force components a proportional electrical 

charge is generated dynamometer. These charges are converted into analogue DC voltages 

in the topped charge amplifiers. These voltages can then be recorded, displayed or processed 

as required. There is drift in z channel, why? It is advisable either to connect the dynamometer 

to the coolant circuit of the machine tool, or to start measuring the cutting force only when 

there is no longer drift in the z channel. The dynamometer is a precision instrument. Its 

inherent accuracy can be exploited and maintained only if it is fitted and handled with due 

care. Any failure fixture will introduce internal stress which may even make damage on the 

device. 

 

 

 

5.1.3 The AE transducer 

The AE sensor used was a piezo-electric sensor form Kistler with a wide bandwidth of 

about 1 MHz. The sensor has high and low pass filters and a resonant frequency of 100 – 
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900kHz. A review of literature showed that, in metalcutting, most of the work with AE has been 

done in the frequency range of 100 –500kHz . In this range, it is fairly safe to trust the sensor 

dynamics without worrying about the AE signals being easily contaminated with lower 

frequency machine harmonics. The CRO used in the experiments was HP 54602A with upper 

limit of frequency of 150 MHz. 

The technical data of the equipment are listed as below. 

 

 

 Figure 5.1  A View of the AE sensor 

 

 

5.2 Force measurement 

Force measurement is carried out at the same time when AE TMS is recorded. The 

calibration procedure should be completed before any measurement is undertaken. Because 

the measurement process involved three devices, the dynamometer, the charge amplitude 

and the plotter. The calibration of there device is very important. The procedures in calibration 

are listed in the user manual of that machine. The general steps in the force measurement are 

stated below. 

 

Step 1- Connect the dynamometer to the amplifier. Connect the amplifier to the plotter. Make 

sure all the connections are correct.  

 

Step 2 - Adjust the position and the scale factor of  each pointer so as the full scale deflection 

of the point will not exceed the margin. The recommended scale factor for end milling is 

stated below. 

  Fx - 200mV 

  Fy - 200mV 

  Fz - 50mV 

 

Step 3 - before starting the cutting process, turn the paper motor on, otherwise the paper will 

not move and the measured cutting force will only “vibrate” within a line.  
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Step 4 - after the cutting process has finished, turn off the motor for not to waste graphic 

paper.  

 

Step 5 - repeat step 3 to 4 until all the trail testes has been completed. 

 

Step 6 - tear out the graphic paper and start the measurement by using a ruler and a 

calculator. 

 

Step 7 - draw a line at the mid point approximately as Figure shown below. 

 

 

 

 

 

 

 

 

Figure 5.2 Force measurement 

 

Step 8 - measure the distance between the base line and the drawn line. The Base line is the 

line when there is no cutting. 

 

Step 9 - Calculate the cutting force by submitting the measured distance into the equation  

 

M
S

25
5000   

where M is the measured distance 

S is the scale factor  

 

Step 10 - tablized the cutting force with AE TMS for each trial.  

 

 

 

5.3 Calibration of the AE transducer and signal processing system 

Before conducting the experiments, the involved equipment was be carefully prepared 

so that the effect of noise and other uncertainties can be minimized. Noise can  come from the 

measuring equipment, the amplifier, the milling machine and/or the surroundings. Also, 

periodic calibration of AE sensor is very important. One needs to make sure that one is indeed 

measuring AE form the phenomena being studied and not from some extraneous  source.  

Drawn line 
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The AE measuring device was first to be calibrated in order to elimination of the effect of 

AE noise, to fine tune the setting so as to obtain the best measurement and to calibrate the 

HP oscilloscope to ensure that the measurement was exactly what was intended. Background 

noises in the laboratory premises are mostly electric pulses which are propagated and get 

mixed with the AE measuring system. These could be burst signals having the same 

frequency content as acoustic signals emitted from the test material, and the amplitude is 

often comparable to the acoustic signals. Therefore, it is usually impossible to eliminate the 

effect by setting the frequency bandwidth and the threshold level. The only noise elimination 

method then is through shielding and averaging.  

The Hugh-Nielsen test was used for calibration. 

Step 1 - Prepare 5 to 10 2H pencils ,a pencil sharpener, a steel bar with a tapped hope on it. 

The hole was used to attach the sensor on to the plastic. The cross on the surface 

represents the point where 0.5mm 2H pencil tips were broken for calibration purpose. The 

break action was taken at an angle of 30 and the tip length was 1mm.  

 

 

 

 

 

Figure 5. A view of the steel bar for calibration 

 

Step 2 - screw the sensor onto the surface of the bar. The clamping force should not be very 

large. Otherwise, the sensitive sensor will be damaged.  

 

Step 3 - connect the CRO is a plotter. Turn on the CRO and wait for it warm up. 

 

Step 4 - adjust the frequency resonant range within 1 MHz, the volt / unit to 1 V and the time 

base to 20 ms. Set the trigger level for about 100mV to prevent the effect of noise. The 

trigger level, time base and volt / unit can be changed throughout the experiment depends 

on the situation.  

 

Step 5 - slowly put the pencil tip in the surface of the steel bar. The distance between the 

active point and the sensor is 2 cm. Push the pencil downward quickly so that the tip will 

break immediately. 

 

Step 6 - output the screen to the plotter 

 

Step 7 - repeat step1 - 6 with another sharpened pencil 
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5.4 AE TMS measurement  

 There are two parts in these testes which greatly involved human error. One is the AE 

TMS measurement and the other is force measurement. The instruction of AE TMS 

measurement is listed below.  

Step 1 - Connect the CRO to the sensor. Care must be taken on the connecting cable.  

Step 2 - Turn on the CRO and input the settings which are obtained during calibration stage. 

However, the time base, volt / unit can be changed during the cutting for a full scale 

display. Remember to set the probe to 100. 

Step 3 - screw the transducer on the workpiece 

Step 4 - Start the cutting process with different cutting material and cutting parameter. Start 

recording the Vrms value on the screen. This will be the average volt of the input signal 

and  is the AE RMS.  

Step 5 - To obtain the TMS, just simply take square of AE RMS.  

Step 6 - Tablized the AE TMS with the force measured. 

Step 7 - Repeat step 3 to 6 with different workpiece and cutting parameters. 

 

 The general human error is coming from the RMS reading. The RMS value displayed on 

the screen keep changing during the cutting. To minimise the reading error, the RMS value 

during the cutting should be recorded down and eventually take the average of the recorded 

values. Set the calculated as the ultimate AE RMS.  

  

 

5.5 The experimental conditions 

5.5.1 Work materials  

The work materials used are the most common  

 

 

5.5.2 End mills 

The most frequently used tool on a vertical milling machine is the end mill. End mills are 

made in either a right-hand or a lift-hand cut. By viewing the cutter from the cutting end, the 

two kinds of cutters can be identified. In this experiment, a right-hand cutter which rotates 

counterclockwise is chosen. The helix of the flutes can also be left or right hand. Figure    are 

the different views of the single end, four flute, right hand end mill used in these experiments.   

 

 

 

 

Figure 5. 
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A right hand helix flute angles downward to the right when viewed form the side. Four 

flutes end mills may have either center cutting teeth or a gashed or center drilled end. End 

mills with center drilled or gashed ends cannot be used to plunge cut their own starting holes.  

 

5.5.3 Cutting conditions 

The cutting conditions in these shop floor experiment are similar to the experiments 

carried out before. No coolant is used during metal removal processes even it is 

recommended for most cutting processes.  

 

 

5.6 Experiments with different work materials 

 The steps of these testes are the same with section 5.7 except to keep the cutting 

conditions constant but different work materials. There are totally five materials available, mild 

steel, steel 4140, soft aluminium, aluminium 6061 and brass. 

The steps are listed below. 

Step 1 - prepare the different workpieces with good machined surface.  

Step 2 - set the required cutting parameter, feedrate, cutting speed, axial depth of cut and 

radial depth of cut before cutting. 

Step 3 - clamp the workpiece into the dynamometer and attached the transducer on to the 

workpiece surface.  

Step 4 - start the cutting process, at the same time record down the AE TMS and cutting 

force.  

Step 5 - unclamp the workpiece from the base.  

Step 6 - Repeat step 3 - 5 with different work materials.  

 

The setting of cutting parameter is tablized below. 

 

Cutting speed/ 

RPM 

feed rate 

/mm/min 

depth of cut /mm radial depth of 

cut /mm 

lubricant 

450 189 2 10 no 

 

Table 5. 

And all the testes are under the same cutting parameter. 

 

5.7 Experiments with different cutting conditions 

The only material for these experiments is mild steel. The steps of due with different cutting 

conditions are similar in Section 5.6.
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Chapter 6  

Training and testing BPNs for force prediction 

 

 

 

6.1 BPN software used 

The neural modeling system used in this project is known as Qnet V2.7. It executes in 32 bit 

protected mode of CPU. Networks sizes is only limited by the size of computer system‟s 

memories and hard disk capacity. It offers a capability of designing an advaned 

backpropagation neural networks just by several easy steps. The training data and testing 

data are grouped in the format of ASCII file or any data file output from MS Excel. The most 

benefit it offers is that one can integrate the source code into his application after he found 

that the designed network gives out best accuracy.  

The general system requirements are listed below. 

 386,486 or Pentium or higher CPU 

 Windows 95 

 VGA or higher graphics adapter 

 4 Mbytes of system memory 

 Minimum 2 Mbytes of free hard disk space for installation 

 

 

6.2 Learning using only the cutting conditions as inputs 

In this training cycle, only cutting condition parameters are involved, depth of cut aa, radial 

depth of cut ar, feed rate f, and cutting speed RPM. The architure of the BPN is shown as 

below. 

 

 

 

 

 

 

 

 

 

Figure 6.1 Four inputs ANN 

The general training procedure and testing procedure are as described in Chapter 4. 

The summaries of the procedure are listed in steps below. 

 

aa 

ar 

f 

RPM 

Cutting force ANN 

{In} 
{O} 
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Step 1- obtained the data sets from the shop floor experiment. Prepare and verify the data for 

reliability by plotting the data into graphs and take out the unstanding point. 

 

Step 2 - divided the data set into two groups, one as training cases, and the other as testing 

cases. The ratio of training to testing is approximately 4 to 1. As there are only 180 sets data, 

it is best to put 140 sets into training group and the remaining into testing group. It has to be 

stressed that the data for the two groups should be selected randomly.  

 

Step 3 - start to input the data into the ANN with different parameters according to the 

sequence from the following table.   

 

Trail cycle  momentum hidden layer hidden nodes 

1 10000 0.8 1 2 

2 5000 0.8 1 2 

3 1000 0.8 1 2 

4 500 0.8 1 2 

5 10000 1 1 2 

6 10000 0.5 1 2 

7 10000 0.1 1 2 

8 10000 0.01 1 2 

9 10000 0.8 2 2 

10 10000 0.8 3 2 

11 10000 0.8 4 2 

12 10000 0.8 1 5 

13 10000 0.8 1 8 

14 10000 0.8 1 10 

 

Table 6.1 Parameter for different trials 

 

Step 4 - save the networks for each trail for later testing process. Eg. The filename can be 

taken as the trail no. of easy retrieval.  

 

Step 5 - After training processes have been completed. It should now start the testing 

processes. Input the testing cases into the trained network for each combination, and record 

down the accuracy. 

 

 

There is another experiment which combines the data from the paper by Lin[     ] The 

procedures are same as above except this time more cases are used. There are 34 cases 

and it will be divided proportionally into 4 to 1.  
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6.3 Learning when the inputs array is augmented by AE TMS  

The ANN is used to predict cutting force in this section. The advantage of using a sensor input 

as an input array has been discussed in the above chapter. The architecture of the ANN is 

sketched as below.  

 

 

 

 

 

 

Figure 6.2 Five inputs ANN 

The steps of training and testing cycle are absolutely the same with section 6.2. The 

only difference is the larger input array.  

ANN 

aa 

ar 

f 

RPM 

Cutting force 

AE TMS 

{In} 
{O} 
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Chapter 7 

Results and Discussion 

 

7.1 AE TMS magnitudes for different work materials 

 The AE TMS tested with 5 kinds of materials are plotted as a histogram for easy 

comparasion.  

 

 Brass Steel 4140 Aluminium 6160 mild steel soft aluminium  

TMS /V 40 9.6 6 2 1.2 

 

Table 7.1 AE TMS of different materials 
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Figure 7.1 Histogram of AE TMS against different materials 

All the testes are carried out under the same cutting condition stated as below.  

 

And the cutting tool is used as the previous four flute end mill. It is interesting to see that, 

brass has the highest AE TMS within the five chosen material. There is an extra hardness test 

which is used to verify the five materials hardness.  

 Brass Steel 4140 Aluminium 6160 Mild Steel Soft Aluminium 

Hardness/ HRB 78 105.3 57.4 89 - 

Force/ N 2000 2400 900 2000 1000 

 

Table 7.2 Hardness and cutting force of the chosen material 
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From the hardness table, it is shown that the steel 4140 has the highest hardness. The 

harder the material, the more force required for cutting. The only exception is happened for 

Soft Aluminium. The hardness test of the material is unknown because it is much softer even 

out of the hardness test range. The measuring machine shows negative sign which is 

meaningless. The high force for cutting soft aluminium is not because of its hardness, but for 

its stickiness. The material adheres on the cutting tool like a cream. This explains why it 

requires larger force than the others.  

Another observation is that, even steel 4140 is the hardest., it generates less AE energy 

compared to Brass, which is far more softer than it. And the same observation is happened 

with aluminium 6061 and Mild Steel. These can be conclude that, the AE TMS has no 

immediate relationship with material hardness.  

The side observation is that, only mild steel and steel 4140 emit smoke. These is because of 

the energy is generated into heat energy and temperature thus increases. At the same time 

there is some oil inside the steel. Together with the influence of high temperature, the oil 

becomes vaporised. That is the reason of only steel will give out smoke.   

 

 

7.2 Effectiveness of BPN when the input array is restricted to cutting conditions alone 

 The data obtained in shop floor experiment will be feed into a backpropagation neural 

network. Some modification will be first make on the input cases. Some data will mixed with 

the experimental data in order to increase the reliability of the old one. The tables below are 

the training result of the mixed data. The main focus are paid on the change of momentum, no 

of hidden layer, no. of hidden nodes and training cycle.  

 

 

Fx Fy Fz Fr 

8 8.2 9.5 6.9 

 

 

Table 7.3 Training accuracy vs different cutting force (without AE) 

(Cycle=10000, momentum=0.8, Hidden layer=1, Hidden nodes=2) 

 

In this test, Fx, Fy, Fz and Fr are all introduced. The difference among this four force to the 

training accuracy are recorded and compared. It is obsively seen that Fr will give the best 

accuracy. This is may be the reason why Liu use resultant force in his experiment. There is no 

empirical explanation to why Fr give better accuracy. It‟s just the result. 
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 Training cycle  

 500 1000 5000 10000 

Fr 13.5 13.4 13.5 8 

 

Table 7.4 Training cycle vs Fr (momentum=0.8, 

 Hidden layer=1, Hidden nodes=2) 

 

 momentum 

 1 0.8 0.5 0.1 0.01 

Fr 13.4 8 11 13.16 12.144 

 

Table 7.5 Momentum vs Fr (Cycle=10000, Hidden layer=1, Hidden nodes=2) 

 

 hidden layer 

 1 2 3 4 

Fr 8 10.5 12.2 9.6 

 

Table 7.6 Hidden layer vs Fr (Cycle=10000, momentum=0.8, Hidden nodes=2) 

 

 

 hidden nodes 

 2 5 8 10 

Fr 9.5 8 10.2 11 

 

Table 7.7 hidden nodes vs Fr (Cycle=10000, momentum=0.8, Hidden layer=1) 

 

It is obviously that only increase of training cycle and no. of hidden layers will not 

improve the performance. And the improvement can be very large, from above 8% down to 

less than 1.5% when using Fr instead of Fx.  
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 However, the accuracy of the system doesn‟t show good improvement by the 

change of no. of units and the momentum. According to the literature, the smaller the 

momentum, the greater accuracy of the ANN. However it is not the case in this experiment. 

The optimize choice of the learning setting is: 

 

Momentum Training Cycle hidden layer Hidden nodes 

0.8 10000 1 5 

 

Table 7.8 The setting for a good ANN 

 

And when accompanied with the use of AE sensory input, the accuracy can be very 

high. It has to be recognized that the ANN training accuracy is maximized by chance. It has to 

be training and training again with different learning setting until the RMS level is accepted. In 

this experience, the accepted level is 3%. All the RMS value above this threshold value will be 

considered as failure, and another training will be arranged with different training settings.  
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7.3 Effectiveness of BPN when the input array is augmented with AE TMS 

The input array this time has one more member, AE TMS, which is the sensory input 

from the milling process. The accuracy of augmented ANN is tablized below. 

 

Fx Fy Fz Fr 

1.1 1.05 2.01 0.7 

 

Table 7.9 Training accuracy with differnet cutting force (with AE) 

 Training cycle  

 500 1000 5000 10000 

Fr 5.2 5.5 6.5 0.7 

 

Table 7.10 Training cycle vs Fr (momentum=0.8, 

 Hidden layer=1, Hidden nodes=2) 

 

 momentum 

 1 0.8 0.5 0.1 0.01 

Fr 6.5 0.7 7.8 5.2 9.2 

 

Table 7.11 Momentum vs Fr (Cycle=10000, Hidden layer=1, Hidden nodes=2) 

 

 hidden layer 

 1 2 3 4 

Fr 0.7 1.03 2.1 1.05 
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Table 7.12 Hidden layer vs Fr (Cycle=10000, momentum=0.8, Hidden nodes=2) 

 

 hidden nodes 

 2 5 8 10 

Fr 1.01 0.9 1.05 1.06 

 

Table 7.13 hidden nodes vs Fr (Cycle=10000, momentum=0.8, Hidden layer=1) 

 The training and testing process shows similar trends to that without AE. However, The 

results are sound good, within 3% level.  

 

 

 

 

 

 

7.4 General observations 

During the shop floor experiment, it is noticed from the CRO reading that there are some 

peaks occurring at the tool entrance and exit in TMS. During the cutting process, only 

continuous variation of the signal level, fast or slow, is observed. The fast and slow graphs 

were directly depended on the time constant of AE signal. Such observation will be paid 

attention on the future development.  

For the ANN, the relationship between input or size of input array should be kept as 

simple as possible. The more complex the network input, the more hidden nodes are needed. 

This will increase the response time also. And this is prohibited as fast deterministic power is 

a “must” in shop floor. It is observed that the larger the training cycle, the accuracy increase 

gradually. And , as Fr is mainly depended on Fx, improvement on Fx is reflected to Fr. Say, 

when the training cycle is 10000, both accuracy of Fx and Fr is improved to a great amount.  

Also, the worst situation is that the learning network is fallen into a local minimum. There 

is only one way to prevent it. By changing the momentum, and keep on trying until a global 

minimum is found. However, there is no guarantee a global minimum can be located. 

However, it is observed that the best momentum for the training and testing cycle is as the 

same as that recommended by the software manufacturer.  

Another problem associate with the training process is the suitable time to "stop" the 

training. The reason for stopping training is very complicated. There is to phenomena happen 

to a network, one s convergence and the other is divergence. When the error in the input-

output network is approaching zero, it  is convergence. When the calculated error increase 



 49 

subsequently, it is divergence. For small sets of input cases, it is far more difficult to determent 

the stopping point. The general relationship of a input-output network can not be found out as 

easy. However, for a larger set of training cases, the network will suffer from "memorize" the 

training pattern rather than to "learn" the pattern. The network becomes less able to due with 

the input signal.  

There is no general role in determining the splitting of the data. According to the 

literature, the learning count meets the most suitable point around 10000. However, one of the 

following learning process will involve different no. of learn counts which may shows the 

different accuracy with different learning count.  

In the past experiment, the experimental data are recorded and often reliability testes on 

the data, 180 sets training cases were chosen and the sets were splitted into two group, say 

140 and 40 while the former one is for training purpose and the later one is for testing 

purpose. The grouped data are then rearranged randomly by a computer in order to minimize 

the "memories" effort of the network.  

The beautiful data from Mr. Liu has been mixed with my own experimental data to see 

whether there is any improvement. Only data with similar cutting condition and end mill are 

used. The observation is that there is no great different to the final result. The reason might be 

the small size of data from Liu which doesn‟t give any influence on my own result. 
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Chapter 8 

Conclusion 

 

 

 

8.1 Conclusions 

The above testes confirmed that the prediction of cutting force can be best implemented 

by adding a sensing input, AE TMS which is a output from the cutting operation. 

 

Sound result on using AE 

extra work on differnet material 

 The literature had clearly state that the AE measurement is greatly influenced by the tool 

wear, tool geometry and the speed of cutting. The first experiment by Dornfeld and Kannatey 

were about the correlation between AE signal and the cutting process conditions. However, 

the studied experiments were mostly based on the single point cutting, such as turning. In this 

study, the focus is paid on the relationship of AE RMS value and the varies cutting parameter 

under multipoint cutting process. Theoretically, the AE RMS and the three cutting components 

should increase with the increase in cutting speed, axial and radial depth of cut due to the 

larger area of shear zone, and tool/chip interfaces. However, the experimental data don't 

follow the theory well. And this contradiction always happened in my experiments.  

 To the experience, there is one assumption that should be take into account. As AE is 

emitted as a burst wave. If the distance between sensing point and the source deeps 

changing, there will be some effect to the AE intensity measured. In the experimental setup, 

the sensor is attached on the workpiece rather than on the tool side. As the tool feed forward, 

the displacement of the source will cause distortion on the target AE, and as the distance is 

longer. The probability of detecting noise increase. Therefore, a multi-sensor system is 

recommended. We can assume the cutting zone as a single point source, and the AE 

emission is the summation of all the individual emissions in the zone. The wave emerges in all 

direction., and eventually they come into the sensor. If we arrange the sensors with equal 

distance from the source, it can be predicted that the detected voltage should be equal. There 

are two proposed system and will be explained clearly in next section. 

 The Huhg - Nicken pencil broken test  was implemented successfully. As mentioned in 

literature, the test was found to be fairly repeatable. It is recommended that any user of AE 

most qualitatively re-calibration the sensor at regular intervals by using this test. 

 Drawback in AE approach is represented by the dependence of the response on cutting 

conditions. It is require to find out the information content of AE on any cutting condition. 

However, it is not yet clear what information content an AE signal has. By "information 

content", we mean the amount of understanding of the cutting phenomenon the AE signal 

provided. This project was not success as one of the hidden aims of this project is to show 

how much can the AE related to the end milling. In contrast, force signals are much better 
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understand. The reason is that, for each process there are well developed models relating the 

input conditions and cutting state to the forces. It requires further research to investigate the 

"information content" of the AE.  

 After the model of AE is well developed as that of force model. It can be used to replace 

the measuring of cutting force in most industries. The result will be better system to reduce 

manufacturing cost.  According to the literature, up milling progress different result as that give 

out in down milling. And the investigation of up milling is left for further experiment. Also, only 

mild steel is used for the reason of commonly usage in the production shop and the easy 

availability in the laboratory. 

 After the experiment, even the data of cutting forces and AE TMS doesn't show linear 

correlation, the result obtained by ANN gives  out surprise. By adding a sensory input to the 

ANN, the accuracy gradually increase, from around 8% to under 1%. Base on this sound 

result, the work will be carried out on future work.  

 

 

 

8.2  Suggestions for future work 

In the following experience, it is desirable to find out the information content of the AE 

during metalcutting. It has to be determined the effect of a various range of workpiece 

material, and repeat the past experiences with more changing parameter. The experience is 

carried out under specific condition, with specific material, tools and cutting condition. The 

result sounds good. The work will be extended to a wide range of cutting condition, work 

material and tools.  

Also, a multisensor system mentioned earlier should be introduced to minimize the effect of 

noise.  

 

 

Figure 8.1 3 sensors in equal distance triangle 
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Figure 8.2 2 sensors system in equal distance 

where     is the single point source 

 Another purpose of the proposed system is to overcome the effect of moving source. IN 

the early days of AE, before the computer-based data logger was available, manufacturers 

quickly developed extensive multi-transducer equipment based on existing strain gauge 

systems.  

 The reason of introducing the mentioned system is to overcome the effect by 

moving sourecs. As the sensor is directly located on the workpiece instead on the tool, the 

deformation zone which is the "only" source of AE emittion keeps on moving. The moving 

speed of the sources depends on the table feed rate. As  AE is propagated in wave form, 

themovement is sources will result in variation in AE amplitude. BY untroducing this 

multisensory technique, the influence of the displaycement will be minimize. The system 

works with three sensors and formed a trangle arrangement. 
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