Int. J. Mach. Tool Des. Res.  Vol. 26, No. 1, pp. 1-14, 1986. 0020-7357/86 $3.00+.00
Printed in Great Britain Pergamon Press Lid.
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Abstract—A model for analysing temperatures in free oblique cutting with sharp cutting tools is developed by

utilising a recent solution for temperature distributions on a rectangular heat source moving obliquely on a
{ semi-infinite conducting medium. The source obliquities introduced at the shear and rake planes by the tool
obliquity are identified and a procedure is developed to compute the temperature distributions and heat
partition coefficients at the shear and rake planes. For mild steel cut by a H.S.S. tool, the mean tool—chip
interface temperature estimated by the new model is in close agreement with that measured by the tool-work
thermocouple method. It is noted that the introduction of tool obliquity results in temperature and heat
partition coefficient distributions which are essentially similar to those obtained in orthogonal cutting. The
mean tool—chip interface temperature is found to decrease with increasing tool obliquity.
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NOMENCLATURE
b wall thickness of tubular workpiece
C, volume specific heat of work material at shear plane
Ea tool—chip contact length
h A functions defined in the text
F P reduced cutting forces (forces directly related to chip formation) in the directions of F, F, and
F, respectively
F tangential force component at the tool-chip interface
F. cutting force component in the direction of cutting speed
F, cutting force component normal to the machined surface
E, cutting force component perpendicular to both F, and F,
i index of source element at tool—chip interface
% it index of sub-area at tool rake surface
I(i', i) chip side influence coefficient relating heat source i to sub-area i’
' J mechanical equivalent of heat
; (i tool side influence coefficient relating heat source i to sub-area i’
Hrh);
' J', Q) parameters defined in the text
i k.:k; thermal conductivities of the chip and tool materials respectively
h k. thermal conductivity of a conducting medium
k. thermal conductivity of work material at shear plane
K, K, constants
= I half length of a rectangular heat source
f o o parameters defined in the text
m number of heat source elements at tool-chip interface
m' half width of a rectangular heat source
m" number of heat source elements within the sticking zone at tool-chip interface
, M. parameters defined in the text
q* rate of heat flux per unit area entering a semi-infinite conducting medium from a rectangular
heat source moving on it
o mean rate of heat flux per unit area entering the chip at source element i
q, mean rate of heat generation per unit area at tool—chip interface
q. i mean rate of heat flux per unit area generated at source eléement i
qs mean rate of heat flux generation per unit area at shear plane
g ; mean rate of heat flux per unit area entering the tool at source element i
R, heat partition coefficient (fraction entering the tool) at source element i
R, mean heat partition coefficient (fraction entering the tool) at tool—chip interface
R, mean heat partition coefficient (fraction entering the chip) at shear plane
s shear force on the shear plane
t time
t uncut chip thickness
ty chip thickness
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u a parameter defined in the Appendix

v cutting speed; velocity of a rectangular heat source relative to a semi-infinite conducting
medium

V. chip speed

Vs velocity of shear at the shear plane

w a parameter defined in the text

w length of cutting edge in contact with workpiece

¥ coordinate of a point on a semi-infinite conducting medium

Ax half width of sub-areas at tool—chip interface

X, Xy X, parameters defined in the text

y coordinate of a point on a semi-infinite conducting medium

Y. Y Y. parameters defined in the text

(- 1 thermal diffusivity of a conducting medium

@, o thermal diffusivities of the chip material at the toolchip interface and the shear plane
respectively

a, normal rake angle g ¥

€, € indices of V in power laws relating 8, and 8, respectively to V

™ chip flow angle

e deviation of V, from the normal to the cutting edge in the shear plane

L indices of t; in power laws relating 8, and 8, respectively to f,

B, ambient temperature

I temperature at the centre of sub-area i’ calculated from the chip side

0., tool-work thermocouple temperature

6, i temperature at the centre of sub-area i' at tool-chip interface

0, rake temperature

0, mean temperature at shear plane

8, temperature at centre of sub-area i’ calculated from the tool side

A mean temperature rise over a rectangular heat source moving on a semi-infinite conducting
medium

AB (x,y) temperature rise at point (x, y)

Al . mean temperature rise at shear plane calculated from the chip side

Af; . mean temperature rise at the shear plane calculated from the workpiece side

A tool obliquity

&, normal shear angle

1] obliquity of motion of a rectangular heat source

INTRODUCTION

ALTHOUGH the majority of practical cutting operations are oblique, the analysis of
oblique cutting has received far less attention than has the analysis of the particular case
of zero obliquity i.e. orthogonal cutting. Further, most of the literature on oblique
cutting refers to the mechanics of chip formation while, in contrast, little exists on cutting
temperatures and tool wear analyses. In the present work attention will be concentrated
on a method to predict cutting temperatures as a prerequisite to tool wear prediction.

Most of the analyses of cutting temperatures in orthogonal cutting, for example [1-4],
make use of classical theories of conduction heat transfer employing rectangular moving
heat sources with uniformly distributed heat fluxes. For instance, in orthogonal cutting,
the heat source at the tool—chip interface may be approximated by a rectangular source
with sides W and C, where W is the length of cutting edge in engagement and C, is the
natural tool-chip contact length. From the point of view of the chip, in orthogonal
cutting, this source is moving in a direction perpendicular to one of its sides, namely W,
at a speed equal to chip speed V.. The basic equations governing heat transfer across
such “orthogonally moving” rectangular heat sources are readily available [5, 6].

The above idealisation however is not applicable to oblique cutting where the chip
velocity vector V., is inclined to the perpendicular to.the cutting edge (i.e. side W) by the
chip flow angle 7. Similarly, when modelling the shear plane heat source, the angular
deviation m; of the shear velocity vector V, from the perpendicular to the cutting edge
must be taken into account. It follows that an analysis based on “obliquely moving”
rectangular heat sources is required. The basic equations governing heat transfer across
such obliquely moving heat sources have been derived recently [7]. These will now be
summarised briefly.

Consider Fig. 1 which shows a rectangular heat source of dimensions 2/’ X 2m’' moving
on a semi-infinite conducting medium. The source velocity V relative to the medium has
an obliquity ® defined by the angular deviation of the velocity vector V from side 2/'.
Cartesian axes X and Y are parallel to these sides 2/' and 2m' respectively while the
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Rectangular heat
source of strength q°

Fi16. 1. A rectangular heat source moving obliquely on a semi-infinite conducting medium.

Z-axis is perpendicular to both X and Y. Let g* be the uniformly distributed heat energy
per unit area per unit time entering the conducting medium across the heat source. Let
a,, and k,, be the thermal diffusivity and the thermal conductivity respectively of the
conducting medium. Following (7), the temperature rise A8(x, y) at a point (x, y) on the
conducting medium, in such a situation, can be expressed as:

80(x, ) = e 1 (X, Y. L M, @) M

where the magnitude of the function f; (X, Y, L, M, ®) is given by

” X+ L+ w?cos® X - L+ w?cos®
f:l(X; Y,L,M, (I)) == l {C _'—,\72“,7) R erf( _\/ 3w )}
Y+ M+ w?sin ® Y- M+ w?sin®
{erf( Viw = )—erf( VR )}dw )
in which
Vx 1% vr Vm' V4
= — = X = ——— = = i = ti
X 20, Y 20lm,JL 2mm,M 20Lm,w (2 m) and ¢ = time.(3)

When @ = 0, these equations reduce to the equations of Carslaw and Jaeger [5] for
orthogonally moving rectangular heat sources as, indeed, they should.
The mean temperatures rise A8 over the source area is obviously

g Q‘o‘mfl
=,V Gy ©
where
1 m _r
fi = W[ J fiX, Y, L, M, ®) dx, dy. (5)
—-m' I

No explicit expression is available for the estimation of the definite integral involved in
equation (5) but it may be evaluated using the Gaussian quadrature technique. Such a
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procedure, using 16 knots, has been adopted in the present work. Figure 2 shows the
results of computation at different values of source obliquity ® and non-dimensional
source velocity L and m'/l' = 10. Computations over a wide range of values of ®, L and
m'/l' show that, other conditions remaining the same and provided m'/l' > 1, an increase
in source obliquity ® results in a higher temperature rise A® over the source. Very
simply, this is because a given point on the surface of the conducting medium stays in
contact with the heat source for a longer duration as the source obliquity, ®, is increased.

These heat transfer equations for obliquely moving rectangular heat sources will be
applied in the following sections in order to estimate rake face temperatures in oblique
cutting.
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Fig. 2. Influence of source obliquity @ and non-dimensional source velocity L on the mean temperature

generated over an obliquely moving heat source (for aspect ratio, m'/l’ = 10).

THEORETICAL ANALYSIS OF TEMPERATURES IN FREE OBLIQUE CUTTING

Basic assumptions

This analysis of free oblique cutting temperatures is based on the following assump-

tions:
i
2

()

The tool is ideally sharp and unworn;

The chip formation is continuous without a built up edge and the shear zone can
be approximated as a shear plane;

The chip moves as a rigid body relative to the tool;

The heat flow is steady in the cutting tool and quasi-steady in the chip and the
workpiece;

The rate of heat generation at the shear plane.is uniformly distributed;

The rate of heat generation at the tool-chip interface is uniformly distributed over
the sticking zone and decreases linearly over the sliding zone — becoming zero at
the point where the chip leaves the rake surface;

The temperature of the chip as it leaves the shear zone is uniform;

. Relative to the dimensions of the heat source at the tool-chip interface, the

dimensions of the chip are sufficiently large to permit it to be viewed as a
semi-infinite medium when modelling the moving heat source effect at the
tool—chip interface. Likewise, the dimensions of the workpiece are sufficiently
large to view it as a semi-infinite medium when modelling the moving heat source
effect at the shear plane;
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9. Relative to the dimensions of the tool—chip interface, the dimensions of the tool
are sufficiently large to permit it to be viewed as a quarter-infinite medium when
modelling the stationary heat source effect at the tool-chip interface;

10. Heat losses due to convection and radiation from all the surfaces of the workpiece,
the chip and the tool may be ignored;
11. The chip thickness is the same in any section normal to the cutting edge; and
12. The directions of the shear force S on the shear plane and of the tangential force F
on the rake surface are collinear with the directions of the velocity of shear V, on
the shear plane and the chip speed V. respectively.
It may be noted that all of these assumptions, with the exception of assumption 6, are
implicit in the analysis of Chao and Trigger [3] applicable to orthogonal cutting.
Assumption 6 follows a refinement introduced by Wright ef al. [4].

The mean shear plane temperature 6,

The cutting parameters needed in order to estimate the mean shear plane temperature
8, are the dimensions of the shear plane, the normal shear angle ®,, the angular
deviation m; of the shear velocity vector V, from the normal to the cutting edge in the
shear plane, the shear velocity V; and the mean heat generation rate per unit area g, at
the shear plane. These may be determined from experimental values of chip thickness
ratio /t; and reduced cutting forces (f,, f, and f)) using the relationships [8, 9]
summarised in the Appendix 1. The mean shear plane temperature 6, can now be
calculated by following the procedure adopted by Loewen and Shaw for orthogonal
cutting [2] but taking into account the obliquity of motion of the shear plane heat source.

Let R, be the fraction of shear plane heat flux that leaves with the chip. The rise in
temperature due to this heat flux is

i _ Ry,
a6, . = ¢, V sind, ()

where ¢, is the volume specific heat of the chip material, which may be estimated at
temperature (6, + 6,)/2, V is the cutting speed and &, is the normal shear angle.
Clearly, (1 — R;)q; is the rate of heat per unit area entering the work material from the
shear plane. From the point of view of the workpiece this source may be idealised as a
heat source moving on the semi-infinite workpiece. The actual source is a parallelogram
but, as an approximation, it will be taken as a rectangular source of dimensions W and 1,
cosec ¢, moving with velocity V; at an obliquity m,. Applying equation (4), the mean
temperature rise on the shear plane from this moving heat source may be expressed as

5. = (1= R)gad
A0 v = V.2 @)

where k; and «, are the thermal conductivity and diffusivity of the workpiece material at

the temperature 6,; and the magnitude of /i is obtained from equation (5) using the
substitutions (see equations (3)):

Vet cosec by - 10r o W (8)

O=n; V=V, L= i %

Now from Blok’s Partition Principle [10], A8, . and A8;, ,, are merely two different
expressions for the mean temperature rise at the shear plane, so that

Aﬁ."‘ (s — Ag.!'. WL (9)

Combining equations (6), (7), (8) and (9) an expression for R, may be obtained. The
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mean temperature rise Ad; . (or Aé,_ ) may be obtained by substituting this value of R,
in either equation (6) or (7). Finally the mean shear plane temperature is given by

0, = 0y + A, . = 0y + AD, ,, (10)

where 6, is the ambient temperature.

Source idealisation at the tool—chip contact area

Figure 3 illustrates the source idealisation at tool—chip contact area in free oblique
cutting similar to that used by Chao and Trigger in their analysis of orthogonal cutting
[3]. The tool-chip contact area is a parallelogram of base W and height C,,. This contact
area may be viewed as a stationary heat source lying on the quarter-infinite conducting
medium of the tool (ignoring the effect of non-zero rake and clearance angles). As an
approximation, the heat source at the rake face is replaced by m contiguous rectangular
band sources of width 2Ax (equal to C,/m) with each band source being identified by
index i.

Moving heat sources on chip side at the rake surface

At the rake surface, as viewed from the chip, there are m contiguous rectangular heat
sources moving at a speed equal (but opposite in direction) to the chip velocity V.. The
source velocity V. is inclined to the normal to the cutting edge by the chip flow angle n..
i.e. the source obliquity is m.. Following equation (1), the temperature rise at the centre
of a rectangular sub-area i due to a uniform heat flux g, , per unit area per unit time
entering the chip over source element i can be expressed as

Aec. = qc‘if(if!'i) (11)

where the influence coefficient I(i’, i) is given by

I('l.’! l") = [ﬁf} fl (Xt"is Yii Lc‘! MC) Tlc) (12)

r—.____’-——-_.—-'—-q-—ﬂ-—-'
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i ﬁ.

Fic. 3. Source idealisation at tool-chip contact area in oblique cutting for zero rake tool.
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k. and a, being the thermal conductivity and thermal diffusivity of the chip material (at
the rake temperature). The relevant form of the function f; in equation (12) is obtained
by making the following substitutions in equation (1);
X = X;; = 28x(i — i) VJ2a,,
Y=Y:,=Xptanm, L=L,.=V_.x2a,
M=M,=VWia and ® = 7,. (13)

The resultant temperature at the centre of sub-area i’ due to the combined effect of the
m contiguous moving rake sources is then

e L5 R
1

O, =6 +

[RE

Stationary heat sources on tool side at the rake surface

From the point of view of the tool there are m stationary rectangular sources of
variable intensity distributed over the rake surface. However, to facilitate the assump-
tion of a semi-infinite medium, it is necessary to create m mirror images of these sources
on the other side of the cutting edge. Thus, for every source i there is a mirror image i.
Figure 4 shows the resulting situation at the rake surface. The temperature rise at
sub-area i’ due to a uniform heat flux g, ; per unit area per unit time entering the tool
over the source i is

86, i = g, J'(E ) (15)
where
i w2 o, [ Ax W .
R I Bl s
X, =2&c(i' — i) (17)
Y, = 2Ax (i’ — i) tan 7. (18)

e S e | R

Mirror image of X
rake face AT~ _ : Rake
’ /?5'2/ sasource
/ X f T element i

-
Yéi’?c \\f’?c
Mirror image T N
of source i

e s e
. g ) i Centre of
/—-—1 ‘ f"_ZA“ -'—|2Ax"" sub area i
Xk |

( ' [

——— e — e — — —

Fic. 4. Mirror images i corresponding to each rake source element i.
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and k, is the thermal conductivity of the tool material at the prevailing temperature.
On integration equation (16) gives

J (I’F, i) = fZ(Xn Yn A-r) (19)

where (following [3])

1 [ Y, + W2 Y, - W2
=_* 7 -1 It v g R e o VB
(X, Y, Ax) Ik, {1 X, + x| (‘smh X+ Ax sinh X+ Ax )
. Y, - W2 Y, + Wi2
i L A TR IV e 2T WG
+ |X, — x| (smh X, = Ax sinh ey )
, woof A FBE _1_X,—Ax)
+ |Y, + W12 (smh Y, + Wi sinh W
X, + Ax
BBl o i) ’7)}. (20)
iz : =il SRS oo o 1 i
+ Y, — W2 (smh Y, — Wi sinh™' Y, — W2
The effect of mirror images is similarly obtained by writing
A8y = q.i J" (i, D) (21)
where
4, i = G (22)

and J'(i",i) is equal to function f,(X, Y,, Ax) obtained by substituting X, = 2Ax(i’ + i —
1) for X, in equation (19).

The temperature rise at the centre of sub-area i’ due to the combined effect of source i
and its mirror image 7 is

A0, ;; = AB’,-,,-'; Lk A'B”r.i’i- =i s (23)
where
J@'oy = J@@, i) + I, i). (24)

The' resultant temperature at sub-area i’ due to the combined effect of the m
contiguous stationary rectangular heat sources at the tool—chip interface is then given by

em" — BIJ + g 9,,,}-» e B(_] + g q,_,‘f ](I’,f) (25)
1 =1

i=

Temperature and heat partition coefficients at the rake surface

Clearly, the rate of heat generation per unit area g, ; at source element i at the
tool-chip interface can be expressed as

qri = Qc,.-‘ + q., i (26)

Further, following Blok’s Partition Principle [10], 6. ;- and 8, ; are merely two different
expressions for the temperature 6, ; at the centre of sub-area i’ at the rake surface so that

e(-’,:' e 8;‘," = B,J,—u (2?)
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Combining equations (14), (25), (26) and (27), it is possible now to determine the
temperature distribution 6, ; at the rake surface as well as the magnitude of g,; for any
from known values of 8, and 8,, and a given distribution of heat generation g, ; at the
rake surface.

The mean rake tool—chip interface temperature is then given by

8, =

N

0, . (28)

1
m =1

The heat partition coefficient, expressed as the fraction entering the tool, at source
element i is

Rr.i = qi / qri (29)

so that the mean partition coefficient of heat at the tool—chip interface is

R, = 0 (30)

b4z

1
m =1

Equation (28) will be used later to compute 6, from experimental data on chip
thickness. chip flow angle. tool-chip contact length and cutting forces obtained while
machining mild steel with H.S.S. tools. The validity of the computed variations of 8, will
then be examined in the light of empirical evidence on tool-work thermocouple
temperature, 6,),.

EXPERIMENTAL DETAILS

Cutting tests were performed on a Colchester Triumph 2000 lathe using MTM 41
H.S.S. (RC65) cutting tool bits with 10° normal rake angle, 5° normal clearance angle
and obliquities in the range 0-50°. Tubular mild steel workpieces (OD 50.8 mm, wall
thickness 2 mm and BHN 120) were cut at different speeds (25-55 m/min) and feeds
(0.05-0.2 mm/rev). The speed range selected was sufficiently high to avoid the occurance
of built up edge. All tools used were sharp and no cutting fluid was used.

Cutting forces F,, F, and F, were measured using a Kistler three-component measuring
platform the outputs from which were fed to a UV recorder. Cutting temperatures were
measured by the tool-work thermocouple method. The tools were 150 mm long and
leads to a digital voltmeter were connected to the far ends of the tools which were cooled
by an air jet so as to minimise errors due to parasitic emfs. For each tool, the calibration
of the tool-work thermocouple was effected by using the silver bead technique. The
resulting calibration curves were similar to those reported in [11]. Chip flow angles were
estimated by the technique described in [12]. Shallow axial slots were machined on the
workpieces so that chip lengths corresponding to one revolution of the workpiece could
be obtained. The chip thickness ratios were estimated from the measured values of chip
flow angle and chip length ratio. Tool-chip contact lengths were estimated by viewing the
scratch patterns left by the sliding chips on the rake surface of freshly ground tools.

RESULTS AND DISCUSSION '

Figure 5 shows the measured dependence of #,/t;, C,, and m. on tool obliquity A when V
= 41 m/min and t; = 0.1 mm while Fig. 6 shows the relation between cutting force
components F,, F, and F, and tool obliquity \ at the same cutting conditions. These
results are similar to those reported in earlier works an oblique cutting [8, 9, 12]. Tests at
other cutting speeds in the range 22 to 55 m/min, indicated that changing the cutting
speed does not produce significant changes in the above variations. In the cutting speed
range 55 to 74 m/min slight decreases in ,/t; and C,, were obtained. Tests at other values
of 1;, in the range 0.05 to 0.2 mm, showed that F, F,, F, and C, varied linearly with 7,
whereas £,/t; and m. were independent of changes in #,.
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FiG. 5. Empirical variation of #,/t;/C,, and m,. with tool obliquity (mild steel work piece, H.S.S. tool, dry cutting,
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Fic. 6. Measured variation of cutting force components F,, F, and F, with tool obliquity (cutting conditions as
in Fig. 5).

These experimental data were processed by using a computer programme based on the
temperature analysis for free oblique cutting developed earlier and the equations are
presented in the Appendix. The computer programme utilised the thermal properties for
mild steel quoted in [2] and an iteration procedure was adopted to allow for the
temperature dependence of the workpiece properties. Due to lack of precise informa-
tion, the H.S.S. tool thermal conductivity was taken to be equal to that of the workpiece.
Values of m = 7 and m" = 5 were assumed.

Figures 7 and 8 show the computed distributions of temperature 8, and heat partition
coefficient R, at the tool—chip interface when V = 41 m/min and r = 0.1 mm for A = 0 and
50°. It is clear that, in this range, tool obliquity has no significant effect on the form of
these distributions. Further, these distributions exhibit the same characteristics as those
obtained by Chao and Trigger [3] for orthogonal cutting with carbide tools.

Figures 9 and 10 show the computed variations of the mean shear plane temperature,
8, (depicted by broken lines) and of the mean tool—chlp interface temperature, 0,, at the
rake face (deplcted by continuous lines) with cutting speed, V, and uncut chip thickness,
t;, respectively when A = 0 and 50°. It is seen that both 6, and 6, can be expressed by
power laws of the form

0,= K,V and 8, = K,V=1,™ (31)
where constants K, and K, decrease with increasing A and the indices €', 1', €, and 7,

show some dependence on \ as evidenced by their magnitudes listed for A = 0 and 50° in
Figs 9 and 10.
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Fic. 7. Computed temperature distributions, 6, at the rake face for A = 0 and 50° (cutting conditions as in Fig.

5):

;‘ 1.2~
t 3z
2 8
L*]
= o %8
S £
S 3
§ 5 oar
e
> O =
s % /_ﬁ—-
28 o ’, I | | I L |
- = .'f\r 2 3 4 s 6 7
o = /7 )
I. ’ Rake source element,i
—0.4'_

Fi. 8. Computed distributions of heat partition coefficient, R,, at the rake face for A = 0 and 50° (cutting

conditions as in Fig. 5).

600 —
i |
5001 a i
“T /
& v
o
& 3001 P B
E
@ -
- ..--"""-’(4
lql 200 ——
Id‘ ’—d* 'S
-~ i 8 8 6m
= 0* o a a
50° x v v
100 I TR DT N KT DE|
(s] 20 30 40 50 60 80 100

Cutting speed,V(m/min)

Fic. 9. Computed variations of 8, and @, with cutting speed for i = 0 and i = 50° (other conditions as in Fig. 5).
1.8, ati = 0°% slope, €, = 0.4; 2. 8, at i = 50°; slope, €, = 0.43; 3. 8, at i = 0°; slope, ¢, = 0.26: 4.6, = i = 50%;
slope, €, = 0.25. Also shown for comparison, empirical values of 8,, at i = 0 and i = 50°.

FiG.
Fig.

600
500

400_/
v

—
q?. F—-’ —'X"—.'x#l‘
I 200+ —
% ’-—X" e
-] g i 8, 8, 8,
[¢] 0, & &
50 X v v
100 ] l | 1 J
0.05 0.1 0.2 03 04 05

Uncut chip thickness t, (mm)

10. Computed variations of 8, and 8, with un-cut chip thickness for i = 0 and i = 50°, (other conditions as in
5). 1.8, ati = 0°; slope, , = 0.35; 2. 6, at i = 50°; slope, m, = 0.4; 3. 8, at i = 0°; slope, , = 0.27; 4. B, at{
= 50°; slope, n, = 0.24. Also shown, for comparison, empirical values of 8, ati = 0 and i = 50°.
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Figures 1la and b show the dependence of 8, on tool obliquity A at different
combinations of Vand ;. It is seen that 6, decreases with increasing \ in the entire range of
cutting conditions investigated.

It is difficult to quote an unequivocal reason for the observed decrease in the computed
6, with increasing \ since the temperature analysis given earlier indicates that there are
several parameters through which A can influence 6, viz. source strengths g, and q,; source
velocities V and V; source obliquities m, and ,; and source lengths t,/sin @, and C,,. It is
not easy to isolate the individual effects of these parameters. Further, some of these
parameters have mutually opposing effects on the temperature parameters. For instance,
the heat dissipated in cutting tends to decrease as \ is increased. This results from the
empirically observed decrease in cutting force F, with increasing \ (see Fig. 6) so that 8,
should tend to decrease. On the other hand, an increase in A tends to increase the source
obliquities (n, and m,) at the shear and rake planes which (as implied by Fig. 2) should
result in an increase in 6,. However, despite the above difficulties, sensitivity studies
indicate that the observed decrease in 6, with increasing A is largely due to the decrease in
the specific cutting energy (i.e. decrease in F.) and that this effect outweighs the
influence of A on the source obliquities and other parameters involved.

Consider now the empirical evidence by which the validity of the computed variations
of 6, (illustrated in Figs 9-11) can be assessed. To confirm these variations, one can use
either a direct procedure of measuring rake temperature distributions, say, through
embedded thermocouples (a tedious undertaking of dubioius accuracy) or an indirect
approach based on the investigation of variables, such as tool-work thermocouple
temperature or crater wear, which are known to be strongly influenced by 8,. Due to lack
of information concerning crater wear of H.S.S. tools, we have little choice but to use the
measured tool-work thermocouple temperature, ,,, to check the validity of the
computational procedures used for 6,. Since only sharp cutting tools have been used in
the present investigation, one can assume that 6, is almost entirely the result of the
contact temperature distribution at the rake face. Thus, if the computational procedures
for 6, as a function of \ are correct, one should expect a strong correlation (though not
identity) between 8,, and ,.

The measured values of 6, are plotted in Figs 9-11 alongside the corresponding
computed 6, curves. It is seen that a very strong correlation exists between 6,,, and 8, over
virtually the entire range of cutting conditions investigated.

(There is, however, considerable difference between 6, and 8, when V = 22 m/min
and i = 0 to 20° in Fig. 11a, and it may be significant that these are just the conditions
when the observed chips and cutting force fluctuations indicated partially-discontinuous
chip formation, i.e. that the assumption of continuous chip formation made in the theory
leading to 6r is violated.)

We might pause here to make clear exactly what we are trying to demonstrate and the
extent to which we can be said to have succeeded. A long established analysis for the
temperature generated at the interface between one smooth surface sliding on a
semi-infinite smooth surface has been produced by Carslaw and Jaeger [5]. This is
applicable to a rectangular heat source which is sliding in a direction parallel to one of its
sides and, hence, can be applied only to orthogonal cutting situations [2, 3]. The present
work is an attempt to extend this analysis to oblique cutting through the application of a
recent solution [7] for obliquely moving heat sources. Figure 11 shows that the
differences between the computed values of 8, and the measured values of 8, at given
cutting conditions are not systematically greater at A # 0 from what they are at A = 0, i.e.
whatever discrepancy exists between 0, and 6,,, it is not attributable to the method
adopted here to allow for obliquity, at least over the range of experimental conditions
examined in this work.

CONCLUSIONS

The method proposed here for calculating rake temperatures in oblique cutting has
been shown to account for the influence of obliquity to the same degree of accuracy as
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FiG. 11. Variation of 6, and 8,, with A at various combinations of cutting speed and uncut chip thickness.

that obtained for orthogonal cutting (i.e. zero obliquity). This shows that the errors in
the analysis arise from sources other than those elements introduced to reflect the
influence of obliquity on temperature generation.
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APPENDIX
THE FOLLOWING relationships can be easily obtained from well known analyses [8, 9] of oblique cutting.

7, = arctan (tanicos(d, — a,) — tanmsind, )/cosa,, (A.1)
where
cosa,,

&, = arctan = . (A.2)
S sina,,
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Veosa,cosh (A.3)
"7 cos(d, — ay) cosn,
[{(f.cosn + f,sin\)cosd, —f,sind,}* + {f.sink — f,cosA}]! (A.4)
LU J W ticosecd,,
. RV (A.5)
“"=wc, s
where
F = [{(f-cos\ + fsin\)sina, + f,cosa,}* + (fsink — f,cosh)*J! (A.6)
and
v, = V cosh sing,, (A7)

cos (b, — a,) cosm,

The sticking zone at the tool-chip interface covers elements i = 1 to m” whereas the sliding zone cover
sources i = m” + 1 to m. Following assumption 6, g, ; can be expressed as

q,;i=ufori=1tom"
=u(m— i+ 0.5)/(m — m") fori = m" + 1 to m, where (A.8)
u = mgim" + E T_ﬁ} (A.9)

j=m"+1 m-—m"



